Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
Cell Syst. 2018 Dec 26;7(6):613-626.e5. doi: 10.1016/j.cels.2018.10.014. Epub 2018 Dec 12.
Transcriptional and translational feedback loops in fungi and animals drive circadian rhythms in transcript levels that provide output from the clock, but post-transcriptional mechanisms also contribute. To determine the extent and underlying source of this regulation, we applied newly developed analytical tools to a long-duration, deeply sampled, circadian proteomics time course comprising half of the proteome. We found a quarter of expressed proteins are clock regulated, but >40% of these do not arise from clock-regulated transcripts, and our analysis predicts that these protein rhythms arise from oscillations in translational rates. Our data highlighted the impact of the clock on metabolic regulation, with central carbon metabolism reflecting both transcriptional and post-transcriptional control and opposing metabolic pathways showing peak activities at different times of day. The transcription factor CSP-1 plays a role in this metabolic regulation, contributing to the rhythmicity and phase of clock-regulated proteins.
在真菌和动物中,转录和翻译反馈环驱动转录水平的生物钟节律,为生物钟提供输出,但转录后机制也有贡献。为了确定这种调节的程度和潜在来源,我们应用新开发的分析工具对一个长时间、深度采样的生物钟蛋白质组学时间过程进行了分析,该过程包含了一半的蛋白质组。我们发现四分之一的表达蛋白受到生物钟的调节,但其中超过 40%的蛋白并非来自生物钟调节的转录本,我们的分析预测这些蛋白质节律是由翻译速率的波动引起的。我们的数据突出了生物钟对代谢调节的影响,中心碳代谢反映了转录和转录后控制,相反的代谢途径在一天中的不同时间表现出峰值活性。转录因子 CSP-1 在这种代谢调节中发挥作用,为生物钟调节的蛋白质的节律性和相位做出贡献。