Suppr超能文献

基于测地距离的冷冻电子显微镜图像去噪

Cryo-electron microscope image denoising based on the geodesic distance.

作者信息

Ouyang Jianquan, Liang Zezhi, Chen Chunyu, Fu Zhuosong, Zhang Yue, Liu Hongrong

机构信息

Key Laboratory of Intelligent Computing and Information Processing, Ministry of Education, College of Information Engineering, Xiangtan University, Xiangtan, 411105, China.

College of Physics and Information Science, Hunan Normal University, Changsha, 410081, Hunan, China.

出版信息

BMC Struct Biol. 2018 Dec 17;18(1):18. doi: 10.1186/s12900-018-0094-3.

Abstract

BACKGROUND

To perform a three-dimensional (3-D) reconstruction of electron cryomicroscopy (cryo-EM) images of viruses, it is necessary to determine the similarity of image blocks of the two-dimensional (2-D) projections of the virus. The projections containing high resolution information are typically very noisy. Instead of the traditional Euler metric, this paper proposes a new method, based on the geodesic metric, to measure the similarity of blocks.

RESULTS

Our method is a 2-D image denoising approach. A data set of 2243 cytoplasmic polyhedrosis virus (CPV) capsid particle images in different orientations was used to test the proposed method. Relative to Block-matching and three-dimensional filtering (BM3D), Stein's unbiased risk estimator (SURE), Bayes shrink and K-means singular value decomposition (K-SVD), the experimental results show that the proposed method can achieve a peak signal-to-noise ratio (PSNR) of 45.65. The method can remove the noise from the cryo-EM image and improve the accuracy of particle picking.

CONCLUSIONS

The main contribution of the proposed model is to apply the geodesic distance to measure the similarity of image blocks. We conclude that manifold learning methods can effectively eliminate the noise of the cryo-EM image and improve the accuracy of particle picking.

摘要

背景

为了对病毒的电子冷冻显微镜(cryo-EM)图像进行三维(3-D)重建,有必要确定病毒二维(2-D)投影的图像块之间的相似性。包含高分辨率信息的投影通常噪声很大。本文提出了一种基于测地线度量的新方法,以取代传统的欧拉度量来测量块之间的相似性。

结果

我们的方法是一种二维图像去噪方法。使用一组2243张不同方向的细胞质多角体病毒(CPV)衣壳颗粒图像数据集来测试所提出的方法。相对于块匹配与三维滤波(BM3D)、斯坦无偏风险估计器(SURE)、贝叶斯收缩和K均值奇异值分解(K-SVD),实验结果表明所提出的方法可实现45.65的峰值信噪比(PSNR)。该方法可以去除冷冻电镜图像中的噪声并提高颗粒挑选的准确性。

结论

所提出模型的主要贡献在于应用测地距离来测量图像块的相似性。我们得出结论,流形学习方法可以有效消除冷冻电镜图像的噪声并提高颗粒挑选的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5539/6296045/84cc3f73e467/12900_2018_94_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验