IEEE Trans Neural Netw Learn Syst. 2017 Dec;28(12):2859-2871. doi: 10.1109/TNNLS.2016.2601307. Epub 2016 Sep 13.
Data encoded as symmetric positive definite (SPD) matrices frequently arise in many areas of computer vision and machine learning. While these matrices form an open subset of the Euclidean space of symmetric matrices, viewing them through the lens of non-Euclidean Riemannian (Riem) geometry often turns out to be better suited in capturing several desirable data properties. Inspired by the great success of dictionary learning and sparse coding (DLSC) for vector-valued data, our goal in this paper is to represent data in the form of SPD matrices as sparse conic combinations of SPD atoms from a learned dictionary via a Riem geometric approach. To that end, we formulate a novel Riem optimization objective for DLSC, in which the representation loss is characterized via the affine-invariant Riem metric. We also present a computationally simple algorithm for optimizing our model. Experiments on several computer vision data sets demonstrate superior classification and retrieval performance using our approach when compared with SC via alternative non-Riem formulations.
数据以对称正定(SPD)矩阵的形式经常出现在计算机视觉和机器学习的许多领域。虽然这些矩阵形成了对称矩阵的欧几里得空间的一个开子集,但是通过非欧几里得黎曼(Riem)几何的视角来看待它们,往往更适合捕捉到几个理想的数据属性。受字典学习和稀疏编码(DLSC)在向量值数据上取得巨大成功的启发,我们的目标是通过黎曼几何方法,将数据表示为从学习字典中稀疏的 SPD 原子的圆锥组合。为此,我们为 DLSC 制定了一个新颖的 Riem 优化目标,其中表示损失通过仿射不变的 Riem 度量来描述。我们还提出了一种计算上简单的算法来优化我们的模型。在几个计算机视觉数据集上的实验表明,与通过替代非 Riem 公式的 SC 相比,我们的方法在分类和检索性能上具有优势。