Vroomans Renske M A, Hogeweg Paulien, Ten Tusscher Kirsten H W J
1Centre of Excellence in Experimental and Computational Developmental Biology, Institute of Biotechnology, University of Helsinki, Viikinkaari 5, 00790 Helsinki, Finland.
2Theoretical Biology, Utrecht University, Padualaan 8, 3584CH Utrecht, Netherlands.
Evodevo. 2018 Dec 10;9:24. doi: 10.1186/s13227-018-0113-2. eCollection 2018.
Segmentation, the subdivision of the major body axis into repeated elements, is considered one of the major evolutionary innovations in bilaterian animals. In all three segmented animal clades, the predominant segmentation mechanism is sequential segmentation, where segments are generated one by one in anterior-posterior order from a posterior undifferentiated zone. In vertebrates and arthropods, sequential segmentation is thought to arise from a clock-and-wavefront-type mechanism, where oscillations in the posterior growth zone are transformed into a segmental prepattern in the anterior by a receding wavefront. Previous evo-devo simulation studies have demonstrated that this segmentation type repeatedly arises, supporting the idea of parallel evolutionary origins in these animal clades. Sequential segmentation has been studied most extensively in vertebrates, where travelling waves have been observed that reflect the slowing down of oscillations prior to their cessation and where these oscillations involve a highly complex regulatory network. It is currently unclear under which conditions this oscillator complexity and slowing should be expected to evolve, how they are related and to what extent similar properties should be expected for sequential segmentation in other animal species.
To investigate these questions, we extend a previously developed computational model for the evolution of segmentation. We vary the slope of the posterior morphogen gradient and the strength of gene expression noise. We find that compared to a shallow gradient, a steep morphogen gradient allows for faster evolution and evolved oscillator networks are simpler. Furthermore, under steep gradients, damped oscillators often evolve, whereas shallow gradients appear to require persistent oscillators which are regularly accompanied by travelling waves, indicative of a frequency gradient. We show that gene expression noise increases the likelihood of evolving persistent oscillators under steep gradients and of evolving frequency gradients under shallow gradients. Surprisingly, we find that the evolutions of oscillator complexity and travelling waves are not correlated, suggesting that these properties may have evolved separately.
Based on our findings, we suggest that travelling waves may have evolved in response to shallow morphogen gradients and gene expression noise. These two factors may thus also be responsible for the observed differences between different species within both the arthropod and chordate phyla.
分节,即将主体轴细分为重复的元素,被认为是两侧对称动物的主要进化创新之一。在所有三个分节动物类群中,主要的分节机制是顺序分节,即节段从前向后依次从后部未分化区域逐个产生。在脊椎动物和节肢动物中,顺序分节被认为源于一种时钟和波前类型的机制,其中后部生长区的振荡通过后退的波前转化为前部的节段预模式。先前的进化发育模拟研究表明,这种分节类型反复出现,支持了这些动物类群平行进化起源的观点。顺序分节在脊椎动物中得到了最广泛的研究,在那里观察到了行波,这些行波反映了振荡在停止之前的减速,并且这些振荡涉及一个高度复杂的调控网络。目前尚不清楚在何种条件下这种振荡器的复杂性和减速会发生进化,它们之间有何关系,以及在其他动物物种的顺序分节中应该预期到何种程度的相似特性。
为了研究这些问题,我们扩展了一个先前开发的用于分节进化的计算模型。我们改变后部形态发生素梯度的斜率和基因表达噪声的强度。我们发现,与浅梯度相比,陡峭的形态发生素梯度允许更快的进化,并且进化出的振荡器网络更简单。此外,在陡峭梯度下,阻尼振荡器经常进化,而浅梯度似乎需要持续振荡器,这些振荡器经常伴随着行波,这表明存在频率梯度。我们表明,基因表达噪声增加了在陡峭梯度下进化出持续振荡器以及在浅梯度下进化出频率梯度的可能性。令人惊讶的是,我们发现振荡器复杂性和行波的进化并不相关,这表明这些特性可能是独立进化的。
基于我们的发现,我们认为行波可能是为了响应浅形态发生素梯度和基因表达噪声而进化的。因此,这两个因素也可能是节肢动物门和脊索动物门内不同物种之间观察到的差异的原因。