Suppr超能文献

体节模式形成网络的进化;模块性、稳健性和可进化性的相互作用。

Evolution of networks for body plan patterning; interplay of modularity, robustness and evolvability.

机构信息

Theoretical Biology and Bioinformatics Group, Department of Biology, Utrecht University, Utrecht, The Netherlands.

出版信息

PLoS Comput Biol. 2011 Oct;7(10):e1002208. doi: 10.1371/journal.pcbi.1002208. Epub 2011 Oct 6.

Abstract

A major goal of evolutionary developmental biology (evo-devo) is to understand how multicellular body plans of increasing complexity have evolved, and how the corresponding developmental programs are genetically encoded. It has been repeatedly argued that key to the evolution of increased body plan complexity is the modularity of the underlying developmental gene regulatory networks (GRNs). This modularity is considered essential for network robustness and evolvability. In our opinion, these ideas, appealing as they may sound, have not been sufficiently tested. Here we use computer simulations to study the evolution of GRNs' underlying body plan patterning. We select for body plan segmentation and differentiation, as these are considered to be major innovations in metazoan evolution. To allow modular networks to evolve, we independently select for segmentation and differentiation. We study both the occurrence and relation of robustness, evolvability and modularity of evolved networks. Interestingly, we observed two distinct evolutionary strategies to evolve a segmented, differentiated body plan. In the first strategy, first segments and then differentiation domains evolve (SF strategy). In the second scenario segments and domains evolve simultaneously (SS strategy). We demonstrate that under indirect selection for robustness the SF strategy becomes dominant. In addition, as a byproduct of this larger robustness, the SF strategy is also more evolvable. Finally, using a combined functional and architectural approach, we determine network modularity. We find that while SS networks generate segments and domains in an integrated manner, SF networks use largely independent modules to produce segments and domains. Surprisingly, we find that widely used, purely architectural methods for determining network modularity completely fail to establish this higher modularity of SF networks. Finally, we observe that, as a free side effect of evolving segmentation and differentiation in combination, we obtained in-silico developmental mechanisms resembling mechanisms used in vertebrate development.

摘要

进化发育生物学(evo-devo)的一个主要目标是了解具有越来越复杂的多细胞体计划是如何进化的,以及相应的发育程序是如何在遗传上编码的。人们反复认为,增加体计划复杂性的关键是潜在的发育基因调控网络(GRN)的模块化。这种模块化被认为是网络鲁棒性和可进化性的关键。在我们看来,这些想法虽然听起来很吸引人,但还没有得到充分的检验。在这里,我们使用计算机模拟来研究 GRN 潜在的体计划模式的进化。我们选择体计划的分割和分化,因为这些被认为是后生动物进化中的主要创新。为了允许模块化网络进化,我们独立地选择分割和分化。我们研究了进化网络的鲁棒性、可进化性和模块化的发生和关系。有趣的是,我们观察到两种截然不同的进化策略来进化出分段的、分化的体计划。在第一种策略中,首先是分段,然后是分化(SF 策略)。在第二种情况下,分段和分化域同时进化(SS 策略)。我们证明,在对鲁棒性进行间接选择的情况下,SF 策略变得占主导地位。此外,作为这种更大鲁棒性的副产品,SF 策略也更具可进化性。最后,我们使用功能和结构相结合的方法来确定网络的模块化。我们发现,虽然 SS 网络以集成的方式生成分段和分化域,但 SF 网络主要使用独立的模块来产生分段和分化域。令人惊讶的是,我们发现,广泛使用的、纯粹的用于确定网络模块化的结构方法完全无法建立 SF 网络的这种更高模块化性。最后,我们观察到,作为进化分段和分化的一个自由的附带效应,我们在计算机上获得了类似于脊椎动物发育中使用的发育机制的机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d49/3188509/fe1ffa71b68a/pcbi.1002208.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验