Ten Tusscher K H W J
Theoretical Biology and Bioinformactics Group, Utrecht University, Padualaan 8, 3584, CH Utrecht, The Netherlands.
Eur Phys J E Soft Matter. 2013 May;36(5):54. doi: 10.1140/epje/i2013-13054-7. Epub 2013 May 29.
Segmentation of the major body axis into repeating units is arguably one of the major inventions in the evolution of animal body plan pattering. It is found in current day vertebrates, annelids and arthropods. Most segmented animals seem to use a clock-and-wavefront type mechanism in which oscillations emanating from a posterior growth zone become transformed into an anterior posterior sequence of segments. In contrast, few animals such as Drosophila use a complex gene regulatory hierarchy to simultaneously subdivide their entire body axis into segments. Here I discuss how in silico models simulating the evolution of developmental patterning can be used to investigate the forces and constraints that helped shape these two developmental modes. I perform an analysis of a series of previous simulation studies, exploiting the similarities and differences in their outcomes in relation to model characteristics to elucidate the circumstances and constraints likely to have been important for the evolution of sequential and simultaneous segmentation modes. The analysis suggests that constraints arising from the involved growth process and spatial patterning signal--posterior elongation producing a propagating wavefront versus a tissue wide morphogen gradient--and the evolutionary history--ancestral versus derived segmentation mode--strongly shaped both segmentation mechanisms. Furthermore, this implies that these patterning types are to be expected rather than random evolutionary outcomes and supports the likelihood of multiple parallel evolutionary origins.
将动物体轴分割成重复单元可以说是动物身体结构模式进化过程中的一项重大创新。如今在脊椎动物、环节动物和节肢动物中都能发现这种现象。大多数分节动物似乎采用一种时钟和波前型机制,即从后生长区发出的振荡会转化为从前到后的节段序列。相比之下,像果蝇这样的少数动物则使用复杂的基因调控层级来同时将其整个体轴细分为节段。在这里,我将讨论如何利用模拟发育模式进化的计算机模型来研究有助于塑造这两种发育模式的力量和限制因素。我对一系列先前的模拟研究进行了分析,利用它们的结果与模型特征之间的异同,来阐明对于顺序性和同时性分节模式进化可能至关重要的情况和限制因素。分析表明,由相关生长过程和空间模式信号(后伸长产生传播的波前与全组织形态发生素梯度)以及进化历史(祖先分节模式与衍生分节模式)产生的限制因素,强烈地塑造了这两种分节机制。此外,这意味着这些模式类型是可以预期的,而非随机的进化结果,并支持了多个平行进化起源的可能性。