Suppr超能文献

骨骼肌生物学与疾病中的RNA加工

RNA processing in skeletal muscle biology and disease.

作者信息

Hinkle Emma R, Wiedner Hannah J, Black Adam J, Giudice Jimena

机构信息

a Curriculum in Genetics and Molecular Biology (GMB) , University of North Carolina , Chapel Hill , USA.

b Department of Cell Biology & Physiology , University of North Carolina , Chapel Hill , USA.

出版信息

Transcription. 2019 Feb;10(1):1-20. doi: 10.1080/21541264.2018.1558677. Epub 2019 Jan 15.

Abstract

RNA processing encompasses the capping, cleavage, polyadenylation and alternative splicing of pre-mRNA. Proper muscle development relies on precise RNA processing, driven by the coordination between RNA-binding proteins. Recently, skeletal muscle biology has been intensely investigated in terms of RNA processing. High throughput studies paired with deletion of RNA-binding proteins have provided a high-level understanding of the molecular mechanisms controlling the regulation of RNA-processing in skeletal muscle. Furthermore, misregulation of RNA processing is implicated in muscle diseases. In this review, we comprehensively summarize recent studies in skeletal muscle that demonstrated: (i) the importance of RNA processing, (ii) the RNA-binding proteins that are involved, and (iii) diseases associated with defects in RNA processing.

摘要

RNA加工包括前体mRNA的加帽、切割、多聚腺苷酸化和可变剪接。正常的肌肉发育依赖于由RNA结合蛋白之间的协调驱动的精确RNA加工。最近,骨骼肌生物学在RNA加工方面受到了深入研究。高通量研究与RNA结合蛋白的缺失相结合,为控制骨骼肌中RNA加工调控的分子机制提供了高层次的理解。此外,RNA加工的失调与肌肉疾病有关。在这篇综述中,我们全面总结了骨骼肌方面的最新研究,这些研究表明:(i)RNA加工的重要性,(ii)涉及的RNA结合蛋白,以及(iii)与RNA加工缺陷相关的疾病。

相似文献

1
RNA processing in skeletal muscle biology and disease.
Transcription. 2019 Feb;10(1):1-20. doi: 10.1080/21541264.2018.1558677. Epub 2019 Jan 15.
2
Post-Transcriptional Regulation in Skeletal Muscle Development, Repair, and Disease.
Trends Mol Med. 2021 May;27(5):469-481. doi: 10.1016/j.molmed.2020.12.002. Epub 2020 Dec 29.
3
Long non-coding RNAs in the regulation of skeletal myogenesis and muscle diseases.
Cancer Lett. 2018 Mar 28;417:58-64. doi: 10.1016/j.canlet.2017.12.015. Epub 2017 Dec 16.
4
Diversification of the muscle proteome through alternative splicing.
Skelet Muscle. 2018 Mar 6;8(1):8. doi: 10.1186/s13395-018-0152-3.
5
tRNAs and tRNA fragments as modulators of cardiac and skeletal muscle function.
Biochim Biophys Acta Mol Cell Res. 2020 Mar;1867(3):118465. doi: 10.1016/j.bbamcr.2019.03.012. Epub 2019 Mar 31.
6
Differences in RNA processing underlie the tissue specific phenotype of ISCU myopathy.
Biochim Biophys Acta. 2010 Jun;1802(6):539-44. doi: 10.1016/j.bbadis.2010.02.010. Epub 2010 Mar 4.
7
'Mediator-ing' messenger RNA processing.
Wiley Interdiscip Rev RNA. 2015 Mar-Apr;6(2):257-69. doi: 10.1002/wrna.1273. Epub 2014 Dec 16.
8
Nuclear poly(A) binding protein 1 (PABPN1) and Matrin3 interact in muscle cells and regulate RNA processing.
Nucleic Acids Res. 2017 Oct 13;45(18):10706-10725. doi: 10.1093/nar/gkx786.
9
Coordination between transcription and pre-mRNA processing.
FEBS Lett. 2001 Jun 8;498(2-3):179-82. doi: 10.1016/s0014-5793(01)02485-1.
10
MiR-206, a key modulator of skeletal muscle development and disease.
Int J Biol Sci. 2015 Feb 5;11(3):345-52. doi: 10.7150/ijbs.10921. eCollection 2015.

引用本文的文献

2
A recurrent ABCC2 c.2439 + 5G > A variant disturbs mRNA splicing and causes Dubin-Johnson syndrome.
BMC Med Genomics. 2025 Jul 18;18(1):118. doi: 10.1186/s12920-025-02187-4.
3
Epigenetic regulation in spinal muscular atrophy: emerging areas and future directions.
Orphanet J Rare Dis. 2025 Jul 10;20(1):353. doi: 10.1186/s13023-025-03857-3.
5
Rbm24-mediated post-transcriptional regulation of skeletal and cardiac muscle development, function and regeneration.
J Muscle Res Cell Motil. 2025 Mar;46(1):53-65. doi: 10.1007/s10974-024-09685-5. Epub 2024 Nov 30.
6
FUS-Mediated Inhibition of Myogenesis Elicited by Suppressing TNNT1 Production.
Mol Cell Biol. 2024;44(9):391-409. doi: 10.1080/10985549.2024.2383296. Epub 2024 Aug 12.
7
Epigenetic control of skeletal muscle atrophy.
Cell Mol Biol Lett. 2024 Jul 8;29(1):99. doi: 10.1186/s11658-024-00618-1.
8
Development and validation of a prognostic model based on RNA binding proteins in patients with esophageal cancer.
J Thorac Dis. 2023 Nov 30;15(11):6178-6191. doi: 10.21037/jtd-23-1307. Epub 2023 Nov 27.
10
A human skeletal muscle stem/myotube model reveals multiple signaling targets of cancer secretome in skeletal muscle.
iScience. 2023 Mar 31;26(4):106541. doi: 10.1016/j.isci.2023.106541. eCollection 2023 Apr 21.

本文引用的文献

1
Abnormal RNA stability in amyotrophic lateral sclerosis.
Nat Commun. 2018 Jul 20;9(1):2845. doi: 10.1038/s41467-018-05049-z.
2
Rbfox-Splicing Factors Maintain Skeletal Muscle Mass by Regulating Calpain3 and Proteostasis.
Cell Rep. 2018 Jul 3;24(1):197-208. doi: 10.1016/j.celrep.2018.06.017.
3
Androgens induce growth of the limb skeletal muscles in a rapamycin-insensitive manner.
Am J Physiol Regul Integr Comp Physiol. 2018 Oct 1;315(4):R721-R729. doi: 10.1152/ajpregu.00029.2018. Epub 2018 Jun 13.
5
Exon-skipping advances for Duchenne muscular dystrophy.
Hum Mol Genet. 2018 Aug 1;27(R2):R163-R172. doi: 10.1093/hmg/ddy171.
6
Myotonic Dystrophy and Developmental Regulation of RNA Processing.
Compr Physiol. 2018 Mar 25;8(2):509-553. doi: 10.1002/cphy.c170002.
7
Histone and RNA-binding protein interaction creates crosstalk network for regulation of alternative splicing.
Biochem Biophys Res Commun. 2018 Apr 30;499(1):30-36. doi: 10.1016/j.bbrc.2018.03.101. Epub 2018 Mar 20.
8
Matrin 3 Is a Component of Neuronal Cytoplasmic Inclusions of Motor Neurons in Sporadic Amyotrophic Lateral Sclerosis.
Am J Pathol. 2018 Feb;188(2):507-514. doi: 10.1016/j.ajpath.2017.10.007. Epub 2017 Nov 9.
9
The Role of Eif6 in Skeletal Muscle Homeostasis Revealed by Endurance Training Co-expression Networks.
Cell Rep. 2017 Nov 7;21(6):1507-1520. doi: 10.1016/j.celrep.2017.10.040.
10
Absence of the kinase S6k1 mimics the effect of chronic endurance exercise on glucose tolerance and muscle oxidative stress.
Mol Metab. 2017 Nov;6(11):1443-1453. doi: 10.1016/j.molmet.2017.08.008. Epub 2017 Aug 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验