Department of Materials and Department of Bioengineering, Institute of Biomedical Engineering , Imperial College London , Exhibition Road , London SW7 2AZ , United Kingdom.
School of Engineering , RMIT University , Melbourne , Victoria 3001 , Australia.
J Am Chem Soc. 2018 Dec 26;140(51):18217-18226. doi: 10.1021/jacs.8b04436. Epub 2018 Dec 17.
Quantum-sized metallic clusters protected by biological ligands represent a new class of luminescent materials; yet the understanding of structural information and photoluminescence origin of these ultrasmall clusters remains a challenge. Herein we systematically study the surface ligand dynamics and ligand-metal core interactions of peptide-protected gold nanoclusters (AuNCs) with combined experimental characterizations and theoretical molecular simulations. We show that the peptide sequence plays an important role in determining the surface peptide structuring, interfacial water dynamics and ligand-Au core interaction, which can be tailored by controlling peptide acetylation, constituent amino acid electron donating/withdrawing capacity, aromaticity/hydrophobicity and by adjusting environmental pH. Specifically, emission enhancement is achieved through increasing the electron density of surface ligands in proximity to the Au core, discouraging photoinduced quenching, and by reducing the amount of surface-bound water molecules. These findings provide key design principles for understanding the surface dynamics of peptide-protected nanoparticles and maximizing the photoluminescence of metallic clusters through the exploitation of biologically relevant ligand properties.
受生物配体保护的量子尺寸金属簇代表了一类新型发光材料;然而,对于这些超小簇的结构信息和光致发光起源的理解仍然是一个挑战。在此,我们通过结合实验表征和理论分子模拟,系统地研究了肽保护的金纳米簇(AuNCs)的表面配体动力学和配体-金属核相互作用。我们表明,肽序列在决定表面肽结构、界面水动力学和配体-Au 核相互作用方面起着重要作用,通过控制肽乙酰化、组成氨基酸的供电子/吸电子能力、芳香性/疏水性以及调节环境 pH 值,可以对其进行调整。具体而言,通过增加与 Au 核接近的表面配体的电子密度、抑制光诱导猝灭以及减少表面结合水分子的数量来实现发光增强。这些发现为理解肽保护的纳米颗粒的表面动力学以及通过利用生物相关配体性质最大化金属簇的光致发光提供了关键的设计原则。