Pollitt Stephan, Haunold Thomas, Hossain Sakiat, Behrendt Gereon, Stöger-Pollach Michael, Kawawaki Tokuhisa, Barrabés Noelia, Behrens Malte, Negishi Yuichi, Rupprechter Günther
Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC, 1060 Vienna, Austria.
Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
ACS Catal. 2025 Aug 22;15(17):15459-15474. doi: 10.1021/acscatal.5c04165. eCollection 2025 Sep 5.
The "crude oil exodus" and energy transition will finally hinge on the availability of hydrogen. Catalytic processes like the water-gas shift (WGS) reaction may significantly contribute to its production and become crucial for utilizing alternative feedstocks. This work demonstrates how thiolate-protected gold nanoclusters can be employed as precursors for single-atom alloy (SAA) catalysts. The clusters serve as carriers of heteroatom dopants (Cu, Pd) while precisely maintaining 25 metal atoms per cluster (<1 nm). Using the 2PET ligand during synthesis led to high yield and cluster stability, but ligand exchange was required to link clusters to a ZnO support efficiently. Introducing pMBA as a ligand enabled a homogeneous cluster distribution on the ZnO surface, creating a well-defined catalyst with dual functionality. This SAA catalyst, outperforming a Cu/ZnO/AlO benchmark in WGS, may get industrial relevance when upscaled while still serving as a well-defined model system in catalysis. Thereby, it bridges the gap between practical applications and fundamental research. Pre- and postreaction analysis by XPS proved the presence of the dopants in the catalysts in the expected stoichiometry, showed changes in the electronic structures, but also revealed sulfur migration from the clusters/ligands to the support, forming ZnS. Furthermore, XPS unveiled a pretreatment-induced SMSI decoration effect, stabilizing the small particles during catalysis. (S)-TEM indicated a homogeneous cluster distribution on ZnO after synthesis and proved small particle sizes throughout the experiments. In situ DRIFTS confirmed the accessibility of the dopant atoms by the reactant CO and also detected adsorbed byproducts. The precise size and doping control of thiolate-protected SAA nanoclusters, together with their catalytic performance, demonstrate the potential for targeted future investigations in a wide range of industrial applications.
“原油外流”和能源转型最终将取决于氢气的可得性。诸如水煤气变换(WGS)反应等催化过程可能对其生产做出重大贡献,并成为利用替代原料的关键。这项工作展示了硫醇盐保护的金纳米团簇如何用作单原子合金(SAA)催化剂的前驱体。这些团簇作为杂原子掺杂剂(铜、钯)的载体,同时精确保持每个团簇25个金属原子(<1纳米)。在合成过程中使用2PET配体可实现高产率和团簇稳定性,但需要进行配体交换才能有效地将团簇与氧化锌载体连接起来。引入对甲基苯磺酸作为配体可使团簇在氧化锌表面均匀分布,从而创建具有双重功能的明确催化剂。这种SAA催化剂在WGS反应中优于铜/氧化锌/氧化铝基准催化剂,放大规模后可能具有工业相关性,同时仍可作为催化领域明确的模型系统。因此,它弥合了实际应用与基础研究之间的差距。XPS进行的反应前和反应后分析证明了催化剂中掺杂剂以预期的化学计量比存在,显示了电子结构的变化,但也揭示了硫从团簇/配体迁移到载体,形成了硫化锌。此外,XPS揭示了预处理诱导的强金属-载体相互作用修饰效应,在催化过程中稳定了小颗粒。(S)-TEM表明合成后氧化锌上团簇分布均匀,并在整个实验过程中证明了颗粒尺寸较小。原位漫反射红外傅里叶变换光谱证实了反应物一氧化碳可接近掺杂原子,并检测到了吸附的副产物。硫醇盐保护的SAA纳米团簇精确的尺寸和掺杂控制及其催化性能,展示了在广泛工业应用中进行有针对性的未来研究的潜力。