Center for Virtual Imaging Trials, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University, Durham, North Carolina, USA.
Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, USA.
Med Phys. 2022 Dec;49(12):7447-7457. doi: 10.1002/mp.15967. Epub 2022 Nov 12.
Quantitative analysis of computed tomography (CT) images traditionally utilizes real patient data that can pose challenges with replicability, efficiency, and radiation exposure. Instead, virtual imaging trials (VITs) can overcome these hurdles through computer simulations of models of patients and imaging systems. DukeSim is a scanner-specific CT imaging simulator that has previously been validated with simple cylindrical phantoms, but not with anthropomorphic conditions and clinically relevant measurements.
To validate a scanner-specific CT simulator (DukeSim) for the assessment of lung imaging biomarkers under clinically relevant conditions across multiple scanners using an anthropomorphic chest phantom, and to demonstrate the utility of virtual trials by studying the effects or radiation dose and reconstruction kernels on the lung imaging quantifications.
An anthropomorphic chest phantom with customized tube inserts was imaged with two commercial scanners (Siemens Force and Siemens Flash) at 28 dose and reconstruction conditions. A computational version of the chest phantom was used with a scanner-specific CT simulator (DukeSim) to simulate virtual images corresponding to the settings of the real acquisitions. Lung imaging biomarkers were computed from both real and simulated CT images and quantitatively compared across all imaging conditions. The VIT framework was further utilized to investigate the effects of radiation dose (20-300 mAs) and reconstruction settings (Qr32f, Qr40f, and Qr69f reconstruction kernels using ADMIRE strength 3) on the accuracy of lung imaging biomarkers, compared against the ground-truth values modeled in the computational chest phantom.
The simulated CT images matched closely the real images for both scanners and all imaging conditions qualitatively and quantitatively, with the average biomarker percent error of 3.51% (range 0.002%-18.91%). The VIT study showed that sharper reconstruction kernels had lower accuracy with errors in mean lung HU of 84-94 HU, lung volume of 797-3785 cm , and lung mass of -800 to 1751 g. Lower tube currents had the lower accuracy with errors in mean lung HU of 6-84 HU, lung volume of 66-3785 cm , and lung mass of 170-1751 g. Other imaging biomarkers were consistent under the studied reconstruction settings and tube currents.
We comprehensively evaluated the realism of DukeSim in an anthropomorphic setup across a diverse range of imaging conditions. This study paves the way toward utilizing VITs more reliably for conducting medical imaging experiments that are not practical using actual patient images.
传统的计算机断层扫描(CT)图像定量分析采用真实患者数据,这在可重复性、效率和辐射暴露方面带来了挑战。相反,虚拟成像试验(VIT)可以通过对患者和成像系统模型进行计算机模拟来克服这些障碍。DukeSim 是一种特定于扫描仪的 CT 成像模拟器,此前已经过简单的圆柱形体模验证,但尚未经过人体模型和临床相关测量验证。
使用人体模型胸部体模在多个扫描仪上评估临床相关条件下的肺部成像生物标志物,对特定于扫描仪的 CT 模拟器(DukeSim)进行验证,并通过研究辐射剂量和重建核对肺部成像定量的影响,展示虚拟试验的实用性。
对具有定制管插入物的人体模型胸部体模进行成像,使用两台商业扫描仪(Siemens Force 和 Siemens Flash)在 28 个剂量和重建条件下进行成像。使用特定于扫描仪的 CT 模拟器(DukeSim)对人体模型的计算版本进行模拟,以模拟与真实采集设置相对应的虚拟图像。从真实和模拟 CT 图像中计算出肺部成像生物标志物,并在所有成像条件下进行定量比较。进一步利用 VIT 框架研究辐射剂量(20-300 mAs)和重建设置(Qr32f、Qr40f 和 Qr69f 重建核,ADMIRE 强度 3)对肺部成像生物标志物准确性的影响,与计算胸部体模中建模的真实值进行比较。
模拟 CT 图像与两台扫描仪和所有成像条件的真实图像在定性和定量上都非常匹配,生物标志物平均百分比误差为 3.51%(范围 0.002%-18.91%)。VIT 研究表明,更锐利的重建核具有较低的准确性,平均肺 HU 的误差为 84-94 HU,肺容积为 797-3785 cm3,肺质量为-800 至 1751 g。较低的管电流具有较低的准确性,平均肺 HU 的误差为 6-84 HU,肺容积为 66-3785 cm3,肺质量为 170-1751 g。在研究的重建设置和管电流下,其他成像生物标志物保持一致。
我们在人体模型中全面评估了 DukeSim 在各种成像条件下的逼真度。这项研究为利用 VIT 更可靠地进行实际患者图像不实用的医学成像实验铺平了道路。