Suppr超能文献

利用全外显子测序和质谱法鉴定与血浆蛋白水平相关的常见和罕见遗传变异。

Identification of Common and Rare Genetic Variation Associated With Plasma Protein Levels Using Whole-Exome Sequencing and Mass Spectrometry.

机构信息

Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla (T.S.).

Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla (J.D.L., D.J.G.).

出版信息

Circ Genom Precis Med. 2018 Dec;11(12):e002170. doi: 10.1161/CIRCGEN.118.002170.

Abstract

BACKGROUND

Identifying genetic variation associated with plasma protein levels, and the mechanisms by which they act, could provide insight into alterable processes involved in regulation of protein levels. Although protein levels can be affected by genetic variants, their estimation can also be biased by missense variants in coding exons causing technical artifacts. Integrating genome sequence genotype data with mass spectrometry-based protein level estimation could reduce bias, thereby improving detection of variation that affects RNA or protein metabolism.

METHODS

Here, we integrate the blood plasma protein levels of 664 proteins from 165 participants of the Tromsø Study, measured via tandem mass tag mass spectrometry, with whole-exome sequencing data to identify common and rare genetic variation associated with peptide and protein levels (protein quantitative trait loci [pQTLs]). We additionally use literature and database searches to prioritize putative functional variants for each pQTL.

RESULTS

We identify 109 independent associations (36 protein and 73 peptide) and use genotype data to exclude 49 (4 protein and 45 peptide) as technical artifacts. We describe 2 particular cases of rare variation: 1 associated with the complement pathway and 1 with platelet degranulation. We identify putative functional variants and show that pQTLs act through diverse molecular mechanisms that affect both RNA and protein metabolism.

CONCLUSIONS

We show that although the majority of pQTLs exert their effects by modulating RNA metabolism, many affect protein levels directly. Our work demonstrates the extent by which pQTL studies are affected by technical artifacts and highlights how prioritizing the functional variant in pQTL studies can lead to insights into the molecular steps by which a protein may be regulated.

摘要

背景

鉴定与血浆蛋白水平相关的遗传变异及其作用机制,可以深入了解调节蛋白水平的可改变过程。尽管蛋白水平可能受遗传变异影响,但编码外显子中的错义变异也会导致技术伪影,从而影响其估计。将全基因组序列基因型数据与基于质谱的蛋白水平估计相结合,可减少偏差,从而提高检测影响 RNA 或蛋白代谢的变异的能力。

方法

我们将来自特罗姆瑟研究的 165 名参与者的 664 种血浆蛋白的水平(通过串联质量标签质谱法测量)与全外显子组测序数据整合,以鉴定与肽和蛋白水平相关的常见和罕见遗传变异(蛋白数量性状基因座[pQTL])。我们还通过文献和数据库搜索,为每个 pQTL 优先考虑潜在的功能变异。

结果

我们确定了 109 个独立的关联(36 个蛋白和 73 个肽),并使用基因型数据排除了 49 个(4 个蛋白和 45 个肽)作为技术伪影。我们描述了 2 个罕见变异的特殊情况:1 个与补体途径有关,1 个与血小板脱颗粒有关。我们确定了潜在的功能变异,并表明 pQTL 通过影响 RNA 和蛋白质代谢的多种分子机制发挥作用。

结论

尽管大多数 pQTL 通过调节 RNA 代谢发挥作用,但许多 pQTL 直接影响蛋白水平。我们的工作表明,pQTL 研究受技术伪影影响的程度,并强调了在 pQTL 研究中优先考虑功能变异如何深入了解蛋白质可能受到调节的分子步骤。

相似文献

2
Associations Between Common and Rare Exonic Genetic Variants and Serum Levels of 20 Cardiovascular-Related Proteins: The Tromsø Study.
Circ Cardiovasc Genet. 2016 Aug;9(4):375-83. doi: 10.1161/CIRCGENETICS.115.001327. Epub 2016 Jun 21.
3
Genetic control of the human brain proteome.
Am J Hum Genet. 2021 Mar 4;108(3):400-410. doi: 10.1016/j.ajhg.2021.01.012. Epub 2021 Feb 10.
4
Quantitative trait loci mapping of the mouse plasma proteome (pQTL).
Genetics. 2013 Feb;193(2):601-8. doi: 10.1534/genetics.112.143354. Epub 2012 Nov 19.
5
Large-scale integration of the plasma proteome with genetics and disease.
Nat Genet. 2021 Dec;53(12):1712-1721. doi: 10.1038/s41588-021-00978-w. Epub 2021 Dec 2.
6
Defining the consequences of genetic variation on a proteome-wide scale.
Nature. 2016 Jun 23;534(7608):500-5. doi: 10.1038/nature18270. Epub 2016 Jun 15.
8
Rare variant associations with plasma protein levels in the UK Biobank.
Nature. 2023 Oct;622(7982):339-347. doi: 10.1038/s41586-023-06547-x. Epub 2023 Oct 4.
9
Variation and genetic control of protein abundance in humans.
Nature. 2013 Jul 4;499(7456):79-82. doi: 10.1038/nature12223. Epub 2013 May 15.
10
A genome-wide association study identifies protein quantitative trait loci (pQTLs).
PLoS Genet. 2008 May 9;4(5):e1000072. doi: 10.1371/journal.pgen.1000072.

引用本文的文献

1
Plasma proteome variation and its genetic determinants in children and adolescents.
Nat Genet. 2025 Mar;57(3):635-646. doi: 10.1038/s41588-025-02089-2. Epub 2025 Feb 19.
2
The genetic landscape of neuro-related proteins in human plasma.
Nat Hum Behav. 2024 Nov;8(11):2222-2234. doi: 10.1038/s41562-024-01963-z. Epub 2024 Aug 29.
3
Genetic determinants of plasma protein levels in the Estonian population.
Sci Rep. 2024 Apr 2;14(1):7694. doi: 10.1038/s41598-024-57966-3.
4
The functional impact of rare variation across the regulatory cascade.
Cell Genom. 2023 Sep 6;3(10):100401. doi: 10.1016/j.xgen.2023.100401. eCollection 2023 Oct 11.
5
High plasma levels of C1-inhibitor are associated with lower risk of future venous thromboembolism.
J Thromb Haemost. 2023 Jul;21(7):1849-1860. doi: 10.1016/j.jtha.2023.03.024. Epub 2023 Mar 31.
6
Genetic mechanisms of 184 neuro-related proteins in human plasma.
medRxiv. 2023 Feb 14:2023.02.10.23285650. doi: 10.1101/2023.02.10.23285650.
7
The genetic regulation of protein expression in cerebrospinal fluid.
EMBO Mol Med. 2023 Jan 11;15(1):e16359. doi: 10.15252/emmm.202216359. Epub 2022 Dec 12.
9
Coding and regulatory variants are associated with serum protein levels and disease.
Nat Commun. 2022 Jan 25;13(1):481. doi: 10.1038/s41467-022-28081-6.
10
Soluble Urokinase Plasminogen Activator Receptor: Genetic Variation and Cardiovascular Disease Risk in Black Adults.
Circ Genom Precis Med. 2021 Dec;14(6):e003421. doi: 10.1161/CIRCGEN.121.003421. Epub 2021 Oct 28.

本文引用的文献

2
Genomic atlas of the human plasma proteome.
Nature. 2018 Jun;558(7708):73-79. doi: 10.1038/s41586-018-0175-2. Epub 2018 Jun 6.
3
The Reactome Pathway Knowledgebase.
Nucleic Acids Res. 2018 Jan 4;46(D1):D649-D655. doi: 10.1093/nar/gkx1132.
4
Mapping of 79 loci for 83 plasma protein biomarkers in cardiovascular disease.
PLoS Genet. 2017 Apr 3;13(4):e1006706. doi: 10.1371/journal.pgen.1006706. eCollection 2017 Apr.
5
Connecting genetic risk to disease end points through the human blood plasma proteome.
Nat Commun. 2017 Feb 27;8:14357. doi: 10.1038/ncomms14357.
6
High-Throughput Characterization of Blood Serum Proteomics of IBD Patients with Respect to Aging and Genetic Factors.
PLoS Genet. 2017 Jan 27;13(1):e1006565. doi: 10.1371/journal.pgen.1006565. eCollection 2017 Jan.
7
A journey through the lectin pathway of complement-MBL and beyond.
Immunol Rev. 2016 Nov;274(1):74-97. doi: 10.1111/imr.12468.
8
Associations Between Common and Rare Exonic Genetic Variants and Serum Levels of 20 Cardiovascular-Related Proteins: The Tromsø Study.
Circ Cardiovasc Genet. 2016 Aug;9(4):375-83. doi: 10.1161/CIRCGENETICS.115.001327. Epub 2016 Jun 21.
9
Mendelian randomization: where are we now and where are we going?
Int J Epidemiol. 2015 Apr;44(2):379-88. doi: 10.1093/ije/dyv108.
10
Regulation of age-related macular degeneration-like pathology by complement factor H.
Proc Natl Acad Sci U S A. 2015 Jun 9;112(23):E3040-9. doi: 10.1073/pnas.1424391112. Epub 2015 May 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验