Suppr超能文献

视觉惯性里程计的鲁棒初始化和在线尺度估计。

Visual-Inertial Odometry with Robust Initialization and Online Scale Estimation.

机构信息

Division of Computer Science and Engineering, Hanyang University, Seoul 133-791, Korea.

出版信息

Sensors (Basel). 2018 Dec 5;18(12):4287. doi: 10.3390/s18124287.

Abstract

Visual-inertial odometry (VIO) has recently received much attention for efficient and accurate ego-motion estimation of unmanned aerial vehicle systems (UAVs). Recent studies have shown that optimization-based algorithms achieve typically high accuracy when given enough amount of information, but occasionally suffer from divergence when solving highly non-linear problems. Further, their performance significantly depends on the accuracy of the initialization of inertial measurement unit (IMU) parameters. In this paper, we propose a novel VIO algorithm of estimating the motional state of UAVs with high accuracy. The main technical contributions are the fusion of visual information and pre-integrated inertial measurements in a joint optimization framework and the stable initialization of scale and gravity using relative pose constraints. To account for the ambiguity and uncertainty of VIO initialization, a local scale parameter is adopted in the online optimization. Quantitative comparisons with the state-of-the-art algorithms on the European Robotics Challenge (EuRoC) dataset verify the efficacy and accuracy of the proposed method.

摘要

视觉惯性里程计(VIO)最近受到了广泛关注,因为它可以高效、准确地估计无人机系统(UAV)的自身运动。最近的研究表明,基于优化的算法在给定足够信息时通常可以达到很高的精度,但在解决高度非线性问题时偶尔会出现发散。此外,它们的性能还严重依赖于惯性测量单元(IMU)参数初始化的准确性。在本文中,我们提出了一种新的 VIO 算法,可以高精度估计 UAV 的运动状态。主要的技术贡献是在联合优化框架中融合视觉信息和预积分惯性测量,以及利用相对位姿约束稳定初始化尺度和重力。为了解决 VIO 初始化的模糊性和不确定性问题,在在线优化中采用了局部尺度参数。在欧洲机器人挑战赛(EuRoC)数据集上与最先进算法的定量比较验证了所提方法的有效性和准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5148/6308559/935dcf7f981b/sensors-18-04287-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验