Information Management Unit, Institute for Quality and Efficiency in Health Care (IQWiG), Im Mediapark 8, 50670, Cologne, Germany.
Cochrane Metabolic and Endocrine Disorders Group, Institute of General Practice, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany.
BMC Med Res Methodol. 2018 Dec 18;18(1):171. doi: 10.1186/s12874-018-0625-4.
Little evidence is available on searches for non-randomized studies (NRS) in bibliographic databases within the framework of systematic reviews. For instance, it is currently unclear whether, when searching for NRS, effective restriction of the search strategy to certain study types is possible. The following challenges need to be considered: 1) For non-randomized controlled trials (NRCTs): whether they can be identified by established filters for randomized controlled trials (RCTs). 2) For other NRS types (such as cohort studies): whether study filters exist for each study type and, if so, which performance measures they have. The aims of the present analysis were to identify and validate existing NRS filters in MEDLINE as well as to evaluate established RCT filters using a set of MEDLINE citations.
Our analysis is a retrospective analysis of study filters based on MEDLINE citations of NRS from Cochrane reviews. In a first step we identified existing NRS filters. For the generation of the reference set, we screened Cochrane reviews evaluating NRS, which covered a broad range of study types. The citations of the studies included in the Cochrane reviews were identified via the reviews' bibliographies and the corresponding PubMed identification numbers (PMIDs) were extracted from PubMed. Random samples comprising up to 200 citations (i.e. 200 PMIDs) each were created for each study type to generate the test sets.
A total of 271 Cochrane reviews from 41 different Cochrane groups were eligible for data extraction. We identified 14 NRS filters published since 2001. The study filters generated between 660,000 and 9.5 million hits in MEDLINE. Most filters covered several study types. The reference set included 2890 publications classified as NRS for the generation of the test sets. Twelve test sets were generated (one for each study type), of which 8 included 200 citations each. None of the study filters achieved sufficient sensitivity (≥ 92%) for all of the study types targeted.
The performance of current NRS filters is insufficient for effective use in daily practice. It is therefore necessary to develop new strategies (e.g. new NRS filters in combination with other search techniques). The challenges related to NRS should be taken into account.
在系统评价中,从书目数据库中检索非随机对照研究(NRS)的证据很少。例如,目前尚不清楚在搜索 NRS 时,是否可以将搜索策略有效限制在某些研究类型上。需要考虑以下挑战:1)对于非随机对照试验(NRCT):是否可以通过已建立的 RCT 过滤器来识别它们。2)对于其他 NRS 类型(如队列研究):是否存在针对每种研究类型的研究过滤器,如果存在,它们具有哪些性能指标。本分析的目的是在 MEDLINE 中识别和验证现有的 NRS 过滤器,并使用一组 MEDLINE 引文评估已建立的 RCT 过滤器。
我们的分析是基于 Cochrane 评价 NRS 的 MEDLINE 引文的研究过滤器的回顾性分析。在第一步中,我们确定了现有的 NRS 过滤器。为了生成参考集,我们筛选了评价 NRS 的 Cochrane 综述,这些综述涵盖了广泛的研究类型。通过综述的参考文献和相应的 PubMed 识别号(PMID)从 PubMed 中识别出包含在 Cochrane 综述中的研究的引文。为每种研究类型创建了多达 200 条引文(即 200 个 PMID)的随机样本,以生成测试集。
共有 41 个不同 Cochrane 小组的 271 项 Cochrane 综述符合数据提取条件。我们确定了自 2001 年以来发表的 14 个 NRS 过滤器。在 MEDLINE 中,研究过滤器生成了 660,000 到 950 万条命中。大多数过滤器涵盖了几种研究类型。参考集包括为生成测试集而分类为 NRS 的 2890 篇出版物。生成了 12 个测试集(每个研究类型一个),其中 8 个包含 200 条引文。对于所有目标研究类型,没有一个研究过滤器的敏感性(≥92%)达到足够的水平。
目前的 NRS 过滤器的性能不足以在日常实践中有效使用。因此,有必要开发新的策略(例如,结合其他搜索技术的新 NRS 过滤器)。应考虑与 NRS 相关的挑战。