Passarelli-Araujo Hemanoel, Palmeiro Jussara K, Moharana Kanhu C, Pedrosa-Silva Francisnei, Dalla-Costa Libera M, Venancio Thiago M
Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, P5, Sala 217, 28013-602 Campos dos Goytacazes, RJ, Brazil.
Laboratório de Bacteriologia e Biologia Molecular, Unidade do Laboratório de Análises Clínicas, Complexo Hospital de Clínicas, Universidade Federal do Paraná, Rua Padre Camargo, 280, 80060-240 Curitiba, PR, Brazil.
An Acad Bras Cienc. 2019;91(suppl 1):e20180762. doi: 10.1590/0001-376520182018762. Epub 2018 Dec 17.
Aminoglycosides are a class of antibiotics that play a key role in antimicrobial treatment of Multidrug resistant (MDR) Gram-negative bacilli, typically in combination with β-lactams. Ribosomal 16S RNA modification by methyltransferases (e.g. RmtG) is an aminoglycoside resistance mechanism that, along with the occurrence carbapenem-resistant Enterobacteriaceae (CRE), has become a clinical concern. In Brazil, rmtG genes were initially reported in Klebsiella pneumoniae, and monitoring isolates from other species carrying this gene is critical for epidemiological studies and to prevent dissemination. Here we report the presence of rmtG in Klebisella aerogenes D3 and characterize its genetic context in comparison to isolates from other species. Further, we performed a phylogenetic reconstruction of 900 16S rRNA methyltransferases (16S-RMTases) and methyltransferase-related proteins. We show that, in K. aerogenes D3, rmtG co-occurs with sul2, near a transposon with an IS91-like insertion sequence. Resistome analysis revealed the co-production of RmtG and CTX-M-59. Ongoing surveillance of 16S-RMTases is crucial to delay the dissemination of such multiresistant isolates. Our results also highlight the reduction in treatment options for CRE infections, as well as the need of expanding prevention measures of these pathogens worldwide.
氨基糖苷类是一类抗生素,在多重耐药(MDR)革兰氏阴性杆菌的抗菌治疗中发挥关键作用,通常与β-内酰胺类联合使用。甲基转移酶(如RmtG)对核糖体16S RNA进行修饰是一种氨基糖苷类耐药机制,随着耐碳青霉烯类肠杆菌科细菌(CRE)的出现,这已成为一个临床关注点。在巴西,rmtG基因最初是在肺炎克雷伯菌中报道的,监测携带该基因的其他物种的分离株对于流行病学研究和防止传播至关重要。在此,我们报告产气克雷伯菌D3中存在rmtG,并与其他物种的分离株相比对其遗传背景进行了表征。此外,我们对900种16S rRNA甲基转移酶(16S-RMTases)和甲基转移酶相关蛋白进行了系统发育重建。我们发现,在产气克雷伯菌D3中,rmtG与sul2共同出现,靠近一个带有IS91样插入序列的转座子。耐药基因组分析显示RmtG和CTX-M-59共同产生。持续监测16S-RMTases对于延缓此类多重耐药分离株的传播至关重要。我们的结果还突出了CRE感染治疗选择的减少,以及在全球范围内扩大这些病原体预防措施的必要性。