Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.
FEBS Lett. 2019 Jan;593(2):154-162. doi: 10.1002/1873-3468.13317. Epub 2019 Jan 18.
The buttressed-ring hypothesis, supported by recent cryo-electron tomography analysis of docked synaptic-like vesicles in neuroendocrine cells, postulates that prefusion SNAREpins are stabilized and organized by Synaptotagmin (Syt) ring-like oligomers. Here, we use a reconstituted single-vesicle fusion analysis to test the prediction that destabilizing the Syt1 oligomers destabilizes the clamp and results in spontaneous fusion in the absence of Ca . Vesicles in which Syt oligomerization is compromised by a ring-destabilizing mutation dock and diffuse freely on the bilayer until they fuse spontaneously, similar to vesicles containing only v-SNAREs. In contrast, vesicles containing wild-type Syt are immobile as soon as they attach to the bilayer and remain frozen in place, up to at least 1 h until fusion is triggered by Ca .
支撑环假说得到了最近神经内分泌细胞中对接的突触样小泡冷冻电子断层分析的支持,该假说假设融合前 SNAREpins 被突触融合蛋白(Syt)环状低聚物稳定和组织。在这里,我们使用重新构建的单个囊泡融合分析来测试以下预测:破坏 Syt1 寡聚体的稳定性会破坏夹,并导致在没有 Ca 的情况下自发融合。通过破坏环的突变使 Syt 寡聚化受到影响的囊泡在双层上停靠并自由扩散,直到它们自发融合,类似于仅含有 v-SNARE 的囊泡。相比之下,一旦含有野生型 Syt 的囊泡附着在双层上,它们就会变得不动,并保持冻结状态,至少持续 1 小时,直到 Ca 触发融合。