Suppr超能文献

用于生物反应电学和光学监测的微流控芯片中的仿生膜。

Biomimetic membrane in a microfluidic chip for the electrical and optical monitoring of biological reactions.

作者信息

Mion Delphine, Bunel Louis, Ramakrishnan Sathish, Heo Paul, Pincet Frédéric

机构信息

Laboratoire de Physique de l'Ecole Normale Supérieure, Ecole Normale Supérieure (ENS), Université Paris Sciences et Lettres (PSL), CNRS, Sorbonne Université, Université Paris-Cité, Paris, France.

Nanobiology Institute, Yale University, West Haven, CT, USA.

出版信息

Nat Protoc. 2025 Jun 3. doi: 10.1038/s41596-025-01171-7.

Abstract

Biological membranes separate distinct inner and outer compartments through the organization of fluid lipids into two-dimensional bilayers. The specific lipid composition varies across different membrane types. Model membranes play a crucial role in replicating certain features of biological membranes. They provide invaluable insights to decipher reactions at biological membranes in physicochemical cues. In this Protocol, we present a comprehensive procedure for creating a biomimetic membrane that encompasses key characteristics of biological membranes. Each leaflet of this horizontal and large (~10,000 µm) membrane is obtained from a separate set of liposomes, allowing control of the lipid distribution between the two bilayer leaflets. Suspended in a vertical conduit separating two controllable horizontal microfluidic channels, this membrane can be used for the reconstitution of chemical or molecular reactions in close proximity to the membrane on the desired leaflet. The microfluidic chip containing the two channels separated by the vertical conduit is made of poly(dimethylsiloxane) and is fabricated from resin molds. Initially, oil is trapped in the conduit. Liposome solutions are pushed in each channel and spread on the trapped oil-buffer interface, forming a separate leaflet facing each channel. As oil is absorbed by poly(dimethylsiloxane), the two leaflets assemble and form a bilayer. We outline four applications of this biomimetic membrane microfluidic setup, incorporating optical microscopy and/or electrical readouts (patch-clamp amplifiers): single-particle and global diffusion, membrane fusion and channel formation. The entire protocol, covering chip fabrication, membrane formation and various measurements, can be completed within 2-3 d.

摘要

生物膜通过将流动性脂质组织成二维双层结构来分隔不同的内部和外部隔室。特定的脂质组成因不同的膜类型而异。模型膜在复制生物膜的某些特征方面起着关键作用。它们为解读生物膜在物理化学线索下的反应提供了宝贵的见解。在本实验方案中,我们展示了一种创建仿生膜的综合程序,该仿生膜涵盖了生物膜的关键特征。这种水平且较大(约10,000 µm)的膜的每个小叶均来自单独的一组脂质体,从而可以控制两个双层小叶之间的脂质分布。悬浮在分隔两个可控水平微流体通道的垂直管道中,该膜可用于在所需小叶上靠近膜的位置重构化学或分子反应。包含由垂直管道分隔的两个通道的微流体芯片由聚二甲基硅氧烷制成,并由树脂模具制造。最初,油被困在管道中。脂质体溶液被推入每个通道,并在被困的油 - 缓冲液界面上扩散,形成面向每个通道的单独小叶。随着油被聚二甲基硅氧烷吸收,两个小叶组装形成双层。我们概述了这种仿生膜微流体装置的四种应用,包括光学显微镜和/或电读出(膜片钳放大器):单粒子和整体扩散、膜融合和通道形成。整个实验方案,涵盖芯片制造、膜形成和各种测量,可在2 - 3天内完成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验