Suppr超能文献

实验室规模硝化过程中反复暴露于缺氧-好氧循环后,对一氧化氮(NO)及NO产生适应性的宏转录组学研究

Metatranscriptomic Investigation of Adaptation in NO and NO Production From a Lab-Scale Nitrification Process Upon Repeated Exposure to Anoxic-Aerobic Cycling.

作者信息

Brotto Ariane Coelho, Annavajhala Medini K, Chandran Kartik

机构信息

Department of Earth and Environmental Engineering, Columbia University, New York, NY, United States.

出版信息

Front Microbiol. 2018 Dec 6;9:3012. doi: 10.3389/fmicb.2018.03012. eCollection 2018.

Abstract

The molecular mechanisms of microbial adaptation to repeated anoxic-aerobic cycling were investigated by integrating whole community gene expression (metatranscriptomics) and physiological responses, including the production of nitric (NO) and nitrous (NO) oxides. Anoxic-aerobic cycling was imposed for 17 days in a lab-scale full-nitrification mixed culture system. Prior to cycling, NO and NO levels were sustained at 0.097 ± 0.006 and 0.054 ± 0.019 ppmv, respectively. Once the anoxic-aerobic cycling was initiated, peak emissions were highest on the first day (9.8 and 1.3 ppmv, respectively). By the end of day 17, NO production returned to pre-cycling levels (a peak of 0.12 ± 0.007 ppmv), while NO production reached a new baseline (a peak of 0.32 ± 0.05 ppmv), one order of magnitude higher than steady-state conditions. Concurrently, post-cycling transcription of BQ and Z returned to pre-cycling levels after an initial 5.7- and 9.5-fold increase, while K remained significantly expressed (1.6-fold) for the duration of and after cycling conditions. The imbalance in K and Z mRNA abundance coupled with continuous conversion of NO to NO might explain the elevated post-cycling baseline for NO. Metatranscriptomic investigation notably indicated possible NO production by NOB under anoxic-aerobic cycling through a significant increase in K expression. Opposing effects on AOB (down-regulation) and NOB (up-regulation) CO fixation were observed, suggesting that nitrifying bacteria are differently impacted by anoxic-aerobic cycling. Genes encoding the terminal oxidase of the electron transport chain (NP, BC) were the most significantly transcribed, highlighting a hitherto unexplored pathway to manage high electron fluxes resulting from increased ammonia oxidation rates, and leading to overall, increased NO and NO production. In sum, this study identified underlying metabolic processes and mechanisms contributing to NO and NO production through a systems-level interrogation, which revealed the differential ability of specific microbial groups to adapt to sustained operational conditions in engineered biological nitrogen removal processes.

摘要

通过整合整个群落基因表达(宏转录组学)和生理反应,包括一氧化氮(NO)和一氧化二氮(N₂O)的产生,研究了微生物对反复缺氧-好氧循环的分子机制。在实验室规模的全硝化混合培养系统中进行了17天的缺氧-好氧循环。在循环之前,NO和N₂O水平分别维持在0.097±0.006和0.054±0.019 ppmv。一旦开始缺氧-好氧循环,第一天的峰值排放最高(分别为9.8和1.3 ppmv)。到第17天结束时,NO产生恢复到循环前水平(峰值为0.12±0.007 ppmv),而N₂O产生达到新的基线(峰值为0.32±0.05 ppmv),比稳态条件高一个数量级。同时,BQ和Z的循环后转录在最初分别增加5.7倍和9.5倍后恢复到循环前水平,而K在循环条件期间及之后持续显著表达(1.6倍)。K和Z mRNA丰度的不平衡以及NO持续转化为N₂O可能解释了循环后N₂O基线升高的原因。宏转录组学研究显著表明,在缺氧-好氧循环下,亚硝酸盐氧化菌可能通过K表达的显著增加产生NO。观察到对氨氧化菌(下调)和亚硝酸盐氧化菌(上调)CO固定的相反影响,表明硝化细菌受缺氧-好氧循环的影响不同。编码电子传递链末端氧化酶(NP、BC)的基因转录最为显著,突出了一条迄今未被探索的途径,以管理因氨氧化速率增加而产生的高电子通量,并导致总体上NO和N₂O产量增加。总之,本研究通过系统水平的探究确定了导致NO和N₂O产生的潜在代谢过程和机制,揭示了特定微生物群体在工程生物脱氮过程中适应持续运行条件的不同能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d92/6291752/94adb49e6694/fmicb-09-03012-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验