Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, P.O. Box 611, 8600 Duebendorf, Switzerland.
Environ Sci Technol. 2013 Feb 5;47(3):1339-48. doi: 10.1021/es303174x. Epub 2013 Jan 18.
We present measurements of site preference (SP) and bulk (15)N/(14)N ratios (δ(15)N(bulk)(N2O)) of nitrous oxide (N(2)O) by quantum cascade laser absorption spectroscopy (QCLAS) as a powerful tool to investigate N(2)O production pathways in biological wastewater treatment. QCLAS enables high-precision N(2)O isotopomer analysis in real time. This allowed us to trace short-term fluctuations in SP and δ(15)N(bulk)(N2O) and, hence, microbial transformation pathways during individual batch experiments with activated sludge from a pilot-scale facility treating municipal wastewater. On the basis of previous work with microbial pure cultures, we demonstrate that N(2)O emitted during ammonia (NH(4)(+)) oxidation with a SP of -5.8 to 5.6 ‰ derives mostly from nitrite (NO(2)(-)) reduction (e.g., nitrifier denitrification), with a minor contribution from hydroxylamine (NH(2)OH) oxidation at the beginning of the experiments. SP of N(2)O produced under anoxic conditions was always positive (1.2 to 26.1 ‰), and SP values at the high end of this spectrum (24.9 to 26.1 ‰) are indicative of N(2)O reductase activity. The measured δ(15)N(bulk)(N2O) at the initiation of the NH(4)(+) oxidation experiments ranged between -42.3 and -57.6 ‰ (corresponding to a nitrogen isotope effect Δδ(15)N = δ(15)N(substrate) - δ(15)N(bulk)(N2O) of 43.5 to 58.8 ‰), which is considerably higher than under denitrifying conditions (δ(15)N(bulk)(N2O) 2.4 to -17 ‰; Δδ(15)N = 0.1 to 19.5 ‰). During the course of all NH(4)(+) oxidation and nitrate (NO(3)(-)) reduction experiments, δ(15)N(bulk)(N2O) increased significantly, indicating net (15)N enrichment in the dissolved inorganic nitrogen substrates (NH(4)(+), NO(3)(-)) and transfer into the N(2)O pool. The decrease in δ(15)N(bulk)(N2O) during NO(2)(-) and NH(2)OH oxidation experiments is best explained by inverse fractionation during the oxidation of NO(2)(-) to NO(3)(-).
我们通过量子级联激光吸收光谱(QCLAS)测量了一氧化二氮(N2O)的位偏爱(SP)和体(15)N/(14)N 比值(δ(15)N(N2O)),这是一种研究生物废水处理中 N2O 生成途径的有力工具。QCLAS 能够实时进行高精度的 N2O 同位素分析。这使我们能够在单个批次实验中追踪 SP 和 δ(15)N(N2O)的短期波动,从而追踪微生物转化途径,该实验使用来自处理城市废水的中试设施的活性污泥。基于先前与微生物纯培养物的工作,我们证明了在氨(NH4(+))氧化过程中排放的 SP 为-5.8 至 5.6‰的 N2O 主要来自亚硝酸盐(NO2(-))还原(例如,硝化反硝化),而在实验开始时,羟胺(NH2OH)氧化的贡献较小。在缺氧条件下产生的 N2O 的 SP 始终为正(1.2 至 26.1‰),并且该谱的高端 SP 值(24.9 至 26.1‰)表明存在 N2O 还原酶活性。在 NH4(+)氧化实验开始时测量的 δ(15)N(N2O)的范围为-42.3 至-57.6‰(对应于氮同位素效应Δδ(15)N=δ(15)N(substrate)-δ(15)N(N2O)为 43.5 至 58.8‰),这明显高于反硝化条件下的测量值(δ(15)N(N2O)为 2.4 至-17‰;Δδ(15)N=0.1 至 19.5‰)。在所有 NH4(+)氧化和硝酸盐(NO3(-))还原实验过程中,δ(15)N(N2O)均显着增加,表明溶解无机氮基质(NH4(+),NO3(-))中的净(15)N 富集并转移到 N2O 池中。NO2(-)和 NH2OH 氧化实验中 δ(15)N(N2O)的减少可以最好地通过 NO2(-)氧化为 NO3(-)过程中的反分馏来解释。