Maarafi Ali J, Hara Anderson T, Levon John A, Chu Tien-Min G, Eckert George J, Lippert Frank
Oral Health Prev Dent. 2018;16(6):557-562. doi: 10.3290/j.ohpd.a41660.
To investigate the possible interaction between fluoride treatment time and concentration on enamel caries lesion de-/remineralisation.
The study design followed a three (fluoride concentration: 0, 275, 1250 ppm as sodium fluoride) x four (treatment time: 10, 30, 60, 120 s) factorial design. Caries lesions were created in bovine enamel and the extent of demineralisation determined using Vickers surface microhardness (VHN). Lesions were pH cycled (18 days) with the daily schedule consisting of two fluoride treatments, a 4-h demineralisation period and exposure to artificial saliva at all other times. VHN was determined again after pH cycling and changes to baseline values calculated (∆VHN). Enamel fluoride uptake (EFU) was determined using the microbiopsy technique. Data were analyzed using two-way ANOVA.
The concentration x treatment time interaction was significant for ∆VHN (p < 0.0001) and EFU (p = 0.0298). Dose-response relationships were observed for both variables for fluoride concentration and treatment time. ∆VHN: higher fluoride concentration compensated for shorter treatment time (e.g. ∆VHN [mean ± SD] = 85.5 ± 60.6 for 30 s with 1250 ppm fluoride vs ∆VHN = 84.3 ± 26.9 for 120s with 275 ppm fluoride). EFU data were similar but highlighted a greater ability to discern between fluoride concentrations (e.g. EFU = 4364 ± 1166 ppm vs 8538 ± 9531 ppm; above examples). Although ∆VHN and EFU correlated well (r = 0.723; p < 0.001), lesion demonstrated a greater ability to acquire fluoride than to remineralise.
Behavioural aspects relating to caries can be studied in vitro, although model limitations must be considered. Adequate exposure times to cariostatic concentrations of fluoride are important in maximising caries prevention.
研究氟化物处理时间和浓度对牙釉质龋损脱矿/再矿化的可能相互作用。
本研究设计采用三(氟化物浓度:0、275、1250 ppm 氟化钠)×四(处理时间:10、30、60、120 秒)析因设计。在牛牙釉质中制造龋损,并使用维氏表面显微硬度(VHN)测定脱矿程度。龋损进行 pH 循环(18 天),每日程序包括两次氟化物处理、4 小时脱矿期以及在其他所有时间暴露于人工唾液。pH 循环后再次测定 VHN,并计算相对于基线值的变化(∆VHN)。使用微生物活检技术测定牙釉质氟摄取量(EFU)。数据采用双向方差分析进行分析。
浓度×处理时间的交互作用对∆VHN(p < 0.0001)和 EFU(p = 0.0298)具有显著意义。观察到氟化物浓度和处理时间这两个变量的剂量反应关系。∆VHN:较高的氟化物浓度可弥补较短的处理时间(例如,1250 ppm 氟化物处理 30 秒时∆VHN [平均值±标准差] = 85.5 ± 60.6,而 275 ppm 氟化物处理 120 秒时∆VHN = 84.3 ± 26.9)。EFU 数据相似,但突出了区分氟化物浓度的更强能力(例如,EFU = 4364 ± 1166 ppm 与 8538 ± 9531 ppm;上述示例)。尽管∆VHN 和 EFU 相关性良好(r = 0.723;p < 0.001),但龋损显示出摄取氟化物的能力比再矿化能力更强。
尽管必须考虑模型局限性,但与龋齿相关的行为方面可以在体外进行研究。充分暴露于防龋浓度的氟化物对于最大限度地预防龋齿很重要。