Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria.
Soft Matter. 2019 Jan 21;15(3):452-461. doi: 10.1039/c8sm02030b. Epub 2018 Dec 21.
Microswimmers are exposed in nature to crowded environments and their transport properties depend in a subtle way on the interaction with obstacles. Here, we investigate a model for a single ideal circle swimmer exploring a two-dimensional disordered array of impenetrable obstacles. The microswimmer moves on circular orbits in the freely accessible space and follows the surface of an obstacle for a certain time upon collision. Depending on the obstacle density and the radius of the circular orbits, the microswimmer displays either long-range transport or is localized in a finite region. We show that there are transitions from two localized states to a diffusive state each driven by an underlying static percolation transition. We determine the non-equilibrium state diagram and calculate the mean-square displacements and diffusivities by computer simulations. Close to the transition lines transport becomes subdiffusive which is rationalized as a dynamic critical phenomenon.
微游泳者在自然界中会暴露于拥挤的环境中,它们的输运性质会以微妙的方式依赖于与障碍物的相互作用。在这里,我们研究了一个在二维无孔障碍物无序阵列中探索的单个理想圆形游泳者的模型。微游泳者在自由可及的空间中沿圆形轨道移动,并在碰撞时沿障碍物表面运动一定时间。根据障碍物密度和圆形轨道的半径,微游泳者表现出长程输运或在有限区域内局部化。我们表明,存在从两个局部化状态到扩散状态的转变,每个转变都由基础静态渗流转变驱动。我们确定了非平衡态图,并通过计算机模拟计算了均方位移和扩散系数。在转变线附近,输运变得亚扩散,这可以解释为动态临界现象。