Suppr超能文献

基于流行和大流行数据,使用堆叠模型预测 H1N1 流感病毒的抗原变体。

Predicting antigenic variants of H1N1 influenza virus based on epidemics and pandemics using a stacking model.

机构信息

School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore.

School of Information and Communication Technology, Hanoi University of Science and Technology, Hanoi, Vietnam.

出版信息

PLoS One. 2018 Dec 21;13(12):e0207777. doi: 10.1371/journal.pone.0207777. eCollection 2018.

Abstract

H1N1 is the earliest emerging subtype of influenza A viruses with available genomic sequences, has caused several pandemics and seasonal epidemics, resulting in millions of deaths and enormous economic losses. Timely determination of new antigenic variants is crucial for the vaccine selection and flu prevention. In this study, we chronologically divided the H1N1 strains into several periods in terms of the epidemics and pandemics. Computational models have been constructed to predict antigenic variants based on epidemic and pandemic periods. By sequence analysis, we demonstrated the diverse mutation patterns of HA1 protein on different periods and that an individual model built upon each period can not represent the variations of H1N1 virus. A stacking model was established for the prediction of antigenic variants, combining all the variation patterns across periods, which would help assess a new influenza strain's antigenicity. Three different feature extraction methods, i.e. residue-based, regional band-based and epitope region-based, were applied on the stacking model to verify its feasibility and robustness. The results showed the capability of determining antigenic variants prediction with accuracy as high as 0.908 which performed better than any of the single models. The prediction performance using the stacking model indicates clear distinctions of mutation patterns and antigenicity between epidemic and pandemic strains. It would also facilitate rapid determination of antigenic variants and influenza surveillance.

摘要

H1N1 是最早出现的具有可用基因组序列的甲型流感病毒亚型,已导致多次大流行和季节性流行,造成数百万人死亡和巨大的经济损失。及时确定新的抗原变异体对于疫苗选择和流感预防至关重要。在这项研究中,我们根据流行和大流行时期将 H1N1 菌株按时间顺序分为几个时期。已经构建了计算模型,以便根据流行和大流行时期预测抗原变异体。通过序列分析,我们证明了 HA1 蛋白在不同时期的多样化突变模式,并且基于每个时期建立的单个模型不能代表 H1N1 病毒的变化。建立了一个堆叠模型来预测抗原变异体,结合了所有时期的变化模式,这有助于评估新流感株的抗原性。应用了三种不同的特征提取方法,即残基、区域带和表位区域,对堆叠模型进行了验证,以验证其可行性和鲁棒性。结果表明,该模型具有高达 0.908 的准确性,能够准确预测抗原变异体,优于任何单一模型。使用堆叠模型进行预测的性能表明,流行株和大流行株之间的突变模式和抗原性有明显区别。它还将有助于快速确定抗原变异体和流感监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a545/6303045/5122a49d7202/pone.0207777.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验