Suppr超能文献

质子束电子返回效应:蒙特卡罗模拟与实验验证。

Proton beam electron return effect: Monte Carlo simulations and experimental verification.

机构信息

Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany. OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany. German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany. Both authors contributed equally to this work. Author to whom any correspondence should be addressed.

出版信息

Phys Med Biol. 2019 Jan 29;64(3):035012. doi: 10.1088/1361-6560/aafab4.

Abstract

Proton therapy (PT) is expected to benefit from integration with magnetic resonance (MR) imaging. However, the magnetic field distorts the dose distribution and enhances the dose at tissue-air interfaces by the electron return effect (ERE). The objectives were (a) to provide experimental evidence for the ERE in proton beams and (b) to systematically characterise the dependence of the dose enhancement ratio (DER) on magnetic field strength, orientation, proton energy and voxel size by computer simulations. EBT3 films were irradiated with 200 MeV protons with and without a 0.92 T transverse field of a permanent magnet to determine the DER at effective measurement depths of 0.156 and 0.467 mm from an air interface. High-resolution Monte Carlo simulations were performed to reproduce the irradiation experiments and to calculate the DER for proton energies between 50-200 MeV and magnetic field strengths between 0.35-3 T as function of distance from the air interface. Voxel sizes of 0.05, 0.5 and 1 mm were analysed. DERs of (2.2  ±  0.4)% and (0.5  ±  0.6)% were measured at 0.156 and 0.467 mm from the air interface, respectively. Measurements and simulations agreed within 0.15%. For a 200 MeV proton beam, the maximum DER in 0.05 mm voxels increased with magnetic field strength from 2.6% to 8.2% between 0.35 and 1.5 T, respectively. For a 1.0 T magnetic field, maximum DER increased from 3.2% to 7.6% between 50 and 200 MeV, respectively. Voxel sizes of 0.5 and 1 mm resulted in maximum DER values of 2.6% and 1.4%, respectively. The ERE for proton beams in transverse magnetic fields is measurable. The local dose enhancement is significant, well predictable, decreases rapidly with distance from the air interface, and is negligible beyond 1 mm depth. Its impact on air-filled ionisation chambers and porous tissues (e.g. lung) needs to be considered.

摘要

质子治疗(PT)有望受益于与磁共振(MR)成像的结合。然而,磁场通过电子返回效应(ERE)使剂量分布失真,并在组织-空气界面处增加剂量。目的是:(a)为质子束中的 ERE 提供实验证据;(b)通过计算机模拟系统地描述剂量增强比(DER)对磁场强度、方向、质子能量和体素大小的依赖性。用 200 MeV 质子照射 EBT3 胶片,有和没有永磁体的 0.92 T 横向磁场,以确定从空气界面有效测量深度为 0.156 和 0.467 mm 处的 DER。进行高分辨率蒙特卡罗模拟以再现辐照实验,并计算质子能量在 50-200 MeV 之间和磁场强度在 0.35-3 T 之间时空气界面处的 DER 作为距离的函数。分析了体素大小为 0.05、0.5 和 1 mm。在距空气界面 0.156 和 0.467 mm 处,分别测量到 2.2±0.4%和 0.5±0.6%的 DER。测量值和模拟值在 0.15%以内一致。对于 200 MeV 质子束,在 0.05mm 体素中,最大 DER 随磁场强度从 0.35 T 增加到 1.5 T 时从 2.6%增加到 8.2%。对于 1.0 T 磁场,在 50-200 MeV 之间,最大 DER 从 3.2%增加到 7.6%。体素大小为 0.5 和 1 mm 时,最大 DER 值分别为 2.6%和 1.4%。质子束在横向磁场中的 ERE 是可测量的。局部剂量增强是显著的,可很好地预测,随距离空气界面迅速减少,超过 1 mm 深度则可忽略不计。它对充满空气的电离室和多孔组织(如肺)的影响需要考虑。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验