Institute for Bioengineering, The School of Engineering, The University of Edinburgh, Edinburgh, EH9 3DW, UK.
Institute for Bioengineering, The School of Engineering, The University of Edinburgh, Edinburgh, EH9 3DW, UK.
J Chromatogr A. 2019 Feb 22;1587:119-128. doi: 10.1016/j.chroma.2018.12.017. Epub 2018 Dec 13.
Monolithic adsorbers with anion exchange (AEX) properties have been 3D printed in an easy one-step process, i.e. not requiring post-functionalization to introduce the AEX ligands. The adsorber, 3D printed using a commercial digital light processing (DLP) printer, was obtained by copolymerisation of a bifunctional monomer bearing a positively charged quaternary amine as well as an acrylate group, with the biocompatible crosslinker polyethylene glycol diacrylate (PEGDA). To increase the surface area, polyethylene glycol was introduced into the material formulation as pore forming agent. The influence of photoinitiator (Omnirad 819) and photoabsorber (Reactive Orange 16, RO16) concentration was investigated in order to optimize printing resolution, allowing to reliably 3D print features as small as 200 μm and of highly complex Schoen Gyroids. Protein binding was measured on AEX adsorbers with a range of ligand densities (0.00, 2.03, 2.60 and 3.18 mmol/mL) using bovine serum albumin (BSA) and c-phycocyanin (CPC) as model proteins. The highest equilibrium binding capacity was found for the material presenting the lowest ligand density analysed (2.03 mmol/mL), adsorbing 73.7 ± 5.9 mg/mL and 38.0 ± 2.2 mg/mL of BSA and CPC, respectively. This novel 3D printed material displayed binding capacities in par or even higher than commercially available chromatographic resins. We expect that the herein presented approach of using bifunctional monomers, bearing commonly used chromatography ligands, will help overcome the material limitations currently refraining 3D printing applications in separation sciences.
具有阴离子交换 (AEX) 性质的整体式吸附剂已通过易于一步法 3D 打印,即无需后功能化即可引入 AEX 配体。该吸附剂使用商业数字光处理 (DLP) 打印机通过共聚双官能单体获得,该单体带有带正电荷的季铵盐和丙烯酰胺基团,以及生物相容性交联剂聚乙二醇二丙烯酸酯 (PEGDA)。为了增加表面积,将聚乙二醇引入到材料配方中作为成孔剂。研究了光引发剂 (Omnirad 819) 和光吸收剂 (Reactive Orange 16, RO16) 浓度的影响,以优化打印分辨率,从而能够可靠地 3D 打印小至 200 μm 的特征,并且具有高度复杂的 Schoen Gyroids。使用牛血清白蛋白 (BSA) 和 c-藻蓝蛋白 (CPC) 作为模型蛋白,测量了一系列配体密度 (0.00、2.03、2.60 和 3.18 mmol/mL) 的 AEX 吸附剂上的蛋白质结合。分析发现,配体密度最低的材料具有最高的平衡结合容量(2.03 mmol/mL),分别吸附 73.7 ± 5.9 mg/mL 和 38.0 ± 2.2 mg/mL 的 BSA 和 CPC。这种新型 3D 打印材料的结合容量与商业上可用的色谱树脂相当或更高。我们期望,这里提出的使用带有常见色谱配体的双官能单体的方法将有助于克服目前阻止分离科学中 3D 打印应用的材料限制。