Suppr超能文献

基于 Piezo1 的红细胞体积调节模型。

A Model of Piezo1-Based Regulation of Red Blood Cell Volume.

机构信息

Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; Jožef Stefan Institute, Ljubljana, Slovenia.

Jožef Stefan Institute, Ljubljana, Slovenia.

出版信息

Biophys J. 2019 Jan 8;116(1):151-164. doi: 10.1016/j.bpj.2018.11.3130. Epub 2018 Dec 4.

Abstract

A red blood cell (RBC) performs its function of adequately carrying respiratory gases in blood by its volume being ∼60% of that of a sphere with the same membrane area. For this purpose, human and most other vertebrate RBCs regulate their content of potassium (K) and sodium (Na) ions. The focus considered here is on K efflux through calcium-ion (Ca)-activated Gárdos channels. These channels open under conditions that allow Ca to enter RBCs through Piezo1 mechanosensitive cation-permeable channels. It is postulated that the fraction of open Piezo1 channels depends on the RBC shape as a result of the curvature-dependent Piezo1-bilayer membrane interaction. The consequences of this postulate are studied by introducing a simple model of RBC osmotic behavior supplemented by the dependence of RBC membrane K permeability on the reduced volume (i.e., the ratio of cell volume to its maximal possible volume) of RBC discoid shapes. It is assumed that because of its intrinsic curvature and strong interaction with the surrounding membrane, Piezo1 tends to concentrate in the dimple regions of these shapes, and the fraction of open Piezo1 channels depends on the membrane curvature in that region. It is shown that the properties of the described model can provide the basis for the formation of the negative feedback loop that interrelates cell volume and its content of potassium ions. The model predicts the relation, valid for each cell in an RBC population, between RBC volume and membrane area, thus explaining the large value of the measured membrane area versus the volume correlation coefficient. The mechanism proposed here for RBC volume regulation is in accord with the loss of this correlation in RBCs of Piezo1 knockout mice.

摘要

红细胞(RBC)通过其体积约为具有相同膜面积的球体的 60%,从而充分发挥其在血液中携带呼吸气体的功能。为此,人和大多数其他脊椎动物 RBC 调节其钾(K)和钠(Na)离子的含量。这里关注的焦点是通过钙激活的 Gárdos 通道的 K 外流。这些通道在允许 Ca 通过 Piezo1 机械敏感阳离子渗透性通道进入 RBC 的条件下打开。据推测,由于 RBC 形状的曲率依赖性 Piezo1-双层膜相互作用,开放的 Piezo1 通道的分数取决于 RBC 形状。通过引入补充 RBC 膜 K 渗透性对 RBC 盘状形状的减小体积(即细胞体积与其最大可能体积之比)的依赖性的 RBC 渗透行为的简单模型,研究了这一假设的后果。假设由于其内在曲率和与周围膜的强烈相互作用,Piezo1 倾向于集中在这些形状的凹陷区域,并且开放的 Piezo1 通道的分数取决于该区域的膜曲率。结果表明,所描述模型的特性可以为细胞体积与其钾离子含量之间的负反馈循环的形成提供基础。该模型预测了描述的模型的特性可以为细胞体积与其钾离子含量之间的负反馈循环的形成提供基础。该模型预测了描述的模型的特性可以为细胞体积与其钾离子含量之间的负反馈循环的形成提供基础。该模型预测了对于 RBC 群体中的每个细胞都有效的 RBC 体积与膜面积之间的关系,从而解释了测量的膜面积与体积相关系数之间的大值。这里提出的用于 RBC 体积调节的机制与 Piezo1 敲除小鼠 RBC 中这种相关性的丧失一致。

相似文献

1
A Model of Piezo1-Based Regulation of Red Blood Cell Volume.基于 Piezo1 的红细胞体积调节模型。
Biophys J. 2019 Jan 8;116(1):151-164. doi: 10.1016/j.bpj.2018.11.3130. Epub 2018 Dec 4.
5
Piezo1 regulates shear-dependent nitric oxide production in human erythrocytes.Piezo1 调节人红细胞中剪切依赖型一氧化氮的产生。
Am J Physiol Heart Circ Physiol. 2022 Jul 1;323(1):H24-H37. doi: 10.1152/ajpheart.00185.2022. Epub 2022 May 13.
9
Piezo1, the new actor in cell volume regulation.Piezo1,细胞体积调节的新角色。
Pflugers Arch. 2024 Jul;476(7):1023-1039. doi: 10.1007/s00424-024-02951-y. Epub 2024 Apr 6.

引用本文的文献

3
Physical mechanisms of red blood cell splenic filtration.红细胞脾脏过滤的物理机制。
Proc Natl Acad Sci U S A. 2023 Oct 31;120(44):e2300095120. doi: 10.1073/pnas.2300095120. Epub 2023 Oct 24.

本文引用的文献

2
Structure and mechanogating mechanism of the Piezo1 channel.Piezo1 通道的结构和机械门控机制。
Nature. 2018 Feb 22;554(7693):487-492. doi: 10.1038/nature25743. Epub 2018 Jan 22.
3
Structure of the mechanically activated ion channel Piezo1.机械激活离子通道 Piezo1 的结构。
Nature. 2018 Feb 22;554(7693):481-486. doi: 10.1038/nature25453. Epub 2017 Dec 20.
6
Disorders of erythrocyte hydration.红细胞水合异常
Blood. 2017 Dec 21;130(25):2699-2708. doi: 10.1182/blood-2017-04-590810. Epub 2017 Oct 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验