Suppr超能文献

人红细胞在毛细血管转运过程中对 PIEZO1 激活的上下双相体积反应。

Up-down biphasic volume response of human red blood cells to PIEZO1 activation during capillary transits.

机构信息

School of Computing Science, University of Glasgow, United Kingdom.

Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, United Kingdom.

出版信息

PLoS Comput Biol. 2021 Mar 3;17(3):e1008706. doi: 10.1371/journal.pcbi.1008706. eCollection 2021 Mar.

Abstract

In this paper we apply a novel JAVA version of a model on the homeostasis of human red blood cells (RBCs) to investigate the changes RBCs experience during single capillary transits. In the companion paper we apply a model extension to investigate the changes in RBC homeostasis over the approximately 200000 capillary transits during the ~120 days lifespan of the cells. These are topics inaccessible to direct experimentation but rendered mature for a computational modelling approach by the large body of recent and early experimental results which robustly constrain the range of parameter values and model outcomes, offering a unique opportunity for an in depth study of the mechanisms involved. Capillary transit times vary between 0.5 and 1.5s during which the red blood cells squeeze and deform in the capillary stream transiently opening stress-gated PIEZO1 channels allowing ion gradient dissipation and creating minuscule quantal changes in RBC ion contents and volume. Widely accepted views, based on the effects of experimental shear stress on human RBCs, suggested that quantal changes generated during capillary transits add up over time to develop the documented changes in RBC density and composition during their long circulatory lifespan, the quantal hypothesis. Applying the new red cell model (RCM) we investigated here the changes in homeostatic variables that may be expected during single capillary transits resulting from transient PIEZO1 channel activation. The predicted quantal volume changes were infinitesimal in magnitude, biphasic in nature, and essentially irreversible within inter-transit periods. A sub-second transient PIEZO1 activation triggered a sharp swelling peak followed by a much slower recovery period towards lower-than-baseline volumes. The peak response was caused by net CaCl2 and fluid gain via PIEZO1 channels driven by the steep electrochemical inward Ca2+ gradient. The ensuing dehydration followed a complex time-course with sequential, but partially overlapping contributions by KCl loss via Ca2+-activated Gardos channels, restorative Ca2+ extrusion by the plasma membrane calcium pump, and chloride efflux by the Jacobs-Steward mechanism. The change in relative cell volume predicted for single capillary transits was around 10-5, an infinitesimal volume change incompatible with a functional role in capillary flow. The biphasic response predicted by the RCM appears to conform to the quantal hypothesis, but whether its cumulative effects could account for the documented changes in density during RBC senescence required an investigation of the effects of myriad transits over the full four months circulatory lifespan of the cells, the subject of the next paper.

摘要

在本文中,我们应用一种新颖的 Java 版本的模型来研究人类红细胞 (RBC) 的内稳态,以研究 RBC 在单个毛细血管通过时所经历的变化。在相关论文中,我们应用模型扩展来研究大约 200000 次毛细血管通过期间 RBC 内稳态的变化,这些变化大约持续 120 天。这些都是无法通过直接实验来研究的课题,但是由于最近和早期的大量实验结果对模型参数值和结果进行了严格的限制,使得计算建模方法变得成熟,这些结果提供了一个独特的机会,可以深入研究涉及的机制。在红细胞通过毛细血管的 0.5 到 1.5 秒的时间内,红细胞会在毛细血管流中被挤压和变形,短暂打开压力门控的 PIEZO1 通道,从而允许离子梯度耗散,并导致 RBC 离子含量和体积发生微小的量子变化。基于实验剪切应力对人类 RBC 的影响,人们普遍认为,在毛细血管通过过程中产生的量子变化会随着时间的推移而累积,从而导致 RBC 密度和组成在其漫长的循环寿命中发生有记录的变化,即量子假说。在这里,我们应用新的红细胞模型 (RCM) 研究了由于短暂的 PIEZO1 通道激活,在单个毛细血管通过期间可能发生的内稳态变量变化。预测的量子体积变化非常微小,呈双相性,在跨周期内基本不可逆。短暂的 PIEZO1 激活引发了一个尖锐的肿胀峰值,随后是一个较慢的恢复阶段,回到低于基线的体积。峰值响应是由 PIEZO1 通道驱动的向内电化学 Ca2+梯度引起的净 CaCl2 和流体摄取引起的。随后的脱水过程经历了一个复杂的时间过程,其中包括通过 Ca2+-激活的 Gardos 通道丢失 KCl、质膜钙泵的钙排出以及 Jacobs-Steward 机制的氯离子外排的连续但部分重叠的贡献。预测的单个毛细血管通过的相对细胞体积变化约为 10-5,这是一个非常微小的体积变化,与毛细血管流动中的功能作用不兼容。RCM 预测的双相响应似乎符合量子假说,但要确定其累积效应是否可以解释 RBC 衰老过程中密度的有记录变化,需要研究细胞四个月循环寿命内无数次通过的影响,这是下一篇论文的主题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e9d/7928492/405635f8fc4e/pcbi.1008706.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验