Suppr超能文献

氧化应激、炎症、缺氧及血管生成在糖尿病视网膜病变发生发展中的作用

Role of oxidative stress, inflammation, hypoxia and angiogenesis in the development of diabetic retinopathy.

作者信息

Al-Kharashi Abdullah S

机构信息

Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.

出版信息

Saudi J Ophthalmol. 2018 Oct-Dec;32(4):318-323. doi: 10.1016/j.sjopt.2018.05.002. Epub 2018 May 29.

Abstract

Diabetic retinopathy (DR) is a retinal disease which is one of the most severe complications occuring due to diabetes mellitus and is a major cause of blindness. Patients who have diabetes mellitus for number of years develop characteristic group of lesions in the retina which leads to Diabetic retinopathy. It is a multifactorial condition occuring due to complex cellular interactions between biochemical and metabolic abnormalities taking place in all retinal cells. Considerable research efforts in the past 20 years have suggested that the microvasculature of the retina responds to hyperglycemia through a number of biochemical changes, which includes polyol pathway, protein kinase C activation, upregulation of advanced glycation end products formation and renin angiotensin system activation. Various previous studies had suggest that interaction of these biochemical changes may cause a cascade of events, such as apoptosis, oxidative stress, inflammation and angiogenesis which can lead to the damage of a diabetic retina, causing DR. This highlights that oxidative stress, inflammation, angiogenesis-related factors triggers the occurrence of retinal complication in diabetes are highlighted.

摘要

糖尿病视网膜病变(DR)是一种视网膜疾病,是糖尿病最严重的并发症之一,也是失明的主要原因。患有糖尿病数年的患者会在视网膜中出现特征性的病变群,从而导致糖尿病视网膜病变。它是一种多因素病症,是由所有视网膜细胞中发生的生化和代谢异常之间复杂的细胞相互作用引起的。过去20年的大量研究表明,视网膜微血管通过多种生化变化对高血糖作出反应,这些变化包括多元醇途径、蛋白激酶C激活、晚期糖基化终产物形成的上调和肾素血管紧张素系统激活。先前的各种研究表明,这些生化变化的相互作用可能会引发一系列事件,如细胞凋亡、氧化应激、炎症和血管生成,这些都可能导致糖尿病视网膜的损伤,从而引发糖尿病视网膜病变。这突出了氧化应激、炎症、与血管生成相关的因素引发糖尿病视网膜并发症的发生。

相似文献

1
Role of oxidative stress, inflammation, hypoxia and angiogenesis in the development of diabetic retinopathy.
Saudi J Ophthalmol. 2018 Oct-Dec;32(4):318-323. doi: 10.1016/j.sjopt.2018.05.002. Epub 2018 May 29.
2
Role of inflammation in the pathogenesis of diabetic retinopathy.
Middle East Afr J Ophthalmol. 2012 Jan;19(1):70-4. doi: 10.4103/0974-9233.92118.
3
Diabetic retinopathy--biomolecules and multiple pathophysiology.
Diabetes Metab Syndr. 2015 Jan-Mar;9(1):51-4. doi: 10.1016/j.dsx.2014.09.011. Epub 2014 Oct 24.
4
Oxidative stress and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives.
Rev Endocr Metab Disord. 2008 Dec;9(4):315-27. doi: 10.1007/s11154-008-9090-4.
5
Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications.
Redox Biol. 2020 Oct;37:101799. doi: 10.1016/j.redox.2020.101799. Epub 2020 Nov 13.
6
Diabetic retinopathy and the role of Omega-3 PUFAs: A narrative review.
Exp Eye Res. 2023 Jun;231:109494. doi: 10.1016/j.exer.2023.109494. Epub 2023 May 5.
7
Hypoxia and oxidative stress in the causation of diabetic retinopathy.
Curr Diabetes Rev. 2011 Sep;7(5):291-304. doi: 10.2174/157339911797415620.
8
Role of advanced glycation end products (AGEs) and oxidative stress in diabetic retinopathy.
Curr Pharm Des. 2008;14(10):962-8. doi: 10.2174/138161208784139729.
9
Pathological Perturbations in Diabetic Retinopathy: Hyperglycemia, AGEs, Oxidative Stress and Inflammatory Pathways.
Curr Protein Pept Sci. 2019;20(1):92-110. doi: 10.2174/1389203719666180928123449.
10
Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy.
Biomed Pharmacother. 2015 Aug;74:145-7. doi: 10.1016/j.biopha.2015.08.002. Epub 2015 Aug 13.

引用本文的文献

1
From Pathophysiology to Innovative Therapies in Eye Diseases: A Brief Overview.
Int J Mol Sci. 2025 Sep 1;26(17):8496. doi: 10.3390/ijms26178496.
2
Modulation of Oxidative Stress in Diabetic Retinopathy: Therapeutic Role of Natural Polyphenols.
Antioxidants (Basel). 2025 Jul 17;14(7):875. doi: 10.3390/antiox14070875.
4
Recent advances in engineered exosome-based therapies for ocular vascular disease.
J Nanobiotechnology. 2025 Jul 19;23(1):526. doi: 10.1186/s12951-025-03589-3.
5
Evaluating pentraxin 3 as a diagnostic biomarker for diabetic retinopathy: a systematic review and meta-analysis.
Diabetol Metab Syndr. 2025 Jul 16;17(1):273. doi: 10.1186/s13098-025-01849-8.
7
Functional and molecular insights in topical wound healing by ascorbic acid.
Naunyn Schmiedebergs Arch Pharmacol. 2025 May 3. doi: 10.1007/s00210-025-04180-1.
9
Association between myopia and diabetic retinopathy: A two-sample mendelian randomization study.
Adv Ophthalmol Pract Res. 2024 Oct 11;5(1):32-40. doi: 10.1016/j.aopr.2024.10.003. eCollection 2025 Feb-Mar.

本文引用的文献

2
Molecular mechanisms of diabetic retinopathy: potential therapeutic targets.
Middle East Afr J Ophthalmol. 2015 Apr-Jun;22(2):135-44. doi: 10.4103/0974-9233.154386.
3
Global estimates of diabetes prevalence for 2013 and projections for 2035.
Diabetes Res Clin Pract. 2014 Feb;103(2):137-49. doi: 10.1016/j.diabres.2013.11.002. Epub 2013 Dec 1.
4
Angiogenic Factors and Cytokines in Diabetic Retinopathy.
J Clin Cell Immunol. 2013;Suppl 1(11):1-12. doi: 10.4172/2155-9899.
5
Oxidants, antioxidants and mitochondrial function in non-proliferative diabetic retinopathy.
J Diabetes. 2014 Mar;6(2):167-75. doi: 10.1111/1753-0407.12076. Epub 2013 Aug 21.
8
Interleukin-1β and mitochondria damage, and the development of diabetic retinopathy.
J Ocul Biol Dis Infor. 2011 Jun;4(1-2):3-9. doi: 10.1007/s12177-011-9074-6. Epub 2011 Dec 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验