Suppr超能文献

MDAD:微生物药物关联的特殊资源。

MDAD: A Special Resource for Microbe-Drug Associations.

机构信息

Department of Computer Science and Technology, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China.

School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China.

出版信息

Front Cell Infect Microbiol. 2018 Dec 7;8:424. doi: 10.3389/fcimb.2018.00424. eCollection 2018.

Abstract

The human-associated microbiota is diverse and complex. It takes an essential role in human health and behavior and is closely related to the occurrence and development of disease. Although the diversity and distribution of microbial communities have been widely studied, little is known about the function and dynamics of microbes in the human body or the complex mechanisms of interaction between them and drugs, which are important for drug discovery and design. A high-quality comprehensive microbe and drug association database will be extremely beneficial to explore the relationship between them. In this article, we developed the Microbe-Drug Association Database (MDAD), a collection of clinically or experimentally supported associations between microbes and drugs, collecting 5,055 entries that include 1,388 drugs and 180 microbes from multiple drug databases and related publications. Moreover, we provided detailed annotations for each record, including the molecular form of drugs or hyperlinks from DrugBank, microbe target information from Uniprot and the original reference links. We hope MDAD will be a useful resource for deeper understanding of microbe and drug interactions and will also be beneficial to drug design, disease therapy and human health.

摘要

人体相关微生物群落多样且复杂。它在人类健康和行为中起着至关重要的作用,与疾病的发生和发展密切相关。尽管微生物群落的多样性和分布已经得到了广泛的研究,但对于微生物在人体中的功能和动态,以及它们与药物之间复杂的相互作用机制,人们知之甚少,这些对于药物发现和设计都很重要。一个高质量的综合微生物和药物关联数据库将非常有助于探索它们之间的关系。在本文中,我们开发了微生物-药物关联数据库(MDAD),该数据库收集了微生物和药物之间经过临床或实验支持的关联,共收录了 5055 条记录,其中包括来自多个药物数据库和相关出版物的 1388 种药物和 180 种微生物。此外,我们为每个记录提供了详细的注释,包括药物的分子形式或来自 DrugBank 的超链接、来自 Uniprot 的微生物靶标信息以及原始参考文献链接。我们希望 MDAD 将成为深入了解微生物和药物相互作用的有用资源,也将有助于药物设计、疾病治疗和人类健康。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/875c/6292923/f8fec5e5c993/fcimb-08-00424-g0001.jpg

相似文献

1
MDAD: A Special Resource for Microbe-Drug Associations.
Front Cell Infect Microbiol. 2018 Dec 7;8:424. doi: 10.3389/fcimb.2018.00424. eCollection 2018.
2
Microbe-Disease Association Prediction Using RGCN Through Microbe-Drug-Disease Network.
IEEE/ACM Trans Comput Biol Bioinform. 2023 Nov-Dec;20(6):3353-3362. doi: 10.1109/TCBB.2023.3247035. Epub 2023 Dec 25.
3
A novel approach based on KATZ measure to predict associations of human microbiota with non-infectious diseases.
Bioinformatics. 2017 Mar 1;33(5):733-739. doi: 10.1093/bioinformatics/btw715.
4
Microbial Hub Taxa Link Host and Abiotic Factors to Plant Microbiome Variation.
PLoS Biol. 2016 Jan 20;14(1):e1002352. doi: 10.1371/journal.pbio.1002352. eCollection 2016 Jan.
5
Association Mining to Identify Microbe Drug Interactions Based on Heterogeneous Network Embedding Representation.
IEEE J Biomed Health Inform. 2021 Jan;25(1):266-275. doi: 10.1109/JBHI.2020.2998906. Epub 2021 Jan 5.
7
A weighted and integrated drug-target interactome: drug repurposing for schizophrenia as a use case.
BMC Syst Biol. 2015;9 Suppl 4(Suppl 4):S2. doi: 10.1186/1752-0509-9-S4-S2. Epub 2015 Jun 11.
8
BMCMDA: a novel model for predicting human microbe-disease associations via binary matrix completion.
BMC Bioinformatics. 2018 Aug 13;19(Suppl 9):281. doi: 10.1186/s12859-018-2274-3.
9
Prioritizing disease-causing microbes based on random walking on the heterogeneous network.
Methods. 2017 Jul 15;124:120-125. doi: 10.1016/j.ymeth.2017.06.014. Epub 2017 Jun 16.
10
NTSHMDA: Prediction of Human Microbe-Disease Association Based on Random Walk by Integrating Network Topological Similarity.
IEEE/ACM Trans Comput Biol Bioinform. 2020 Jul-Aug;17(4):1341-1351. doi: 10.1109/TCBB.2018.2883041. Epub 2018 Nov 23.

引用本文的文献

2
Prediction of microbe-drug associations using a CNN-Bernoulli random forest model.
PeerJ. 2025 Aug 5;13:e19637. doi: 10.7717/peerj.19637. eCollection 2025.
5
Computational analysis of the gut microbiota-mediated drug metabolism.
Comput Struct Biotechnol J. 2025 Mar 11;27:1472-1481. doi: 10.1016/j.csbj.2025.03.016. eCollection 2025.
6
MDIPID: Microbiota-drug interaction and disease phenotype interrelation database.
Imeta. 2025 Mar 21;4(2):e70019. doi: 10.1002/imt2.70019. eCollection 2025 Apr.
7
CLMT: graph contrastive learning model for microbe-drug associations prediction with transformer.
Front Genet. 2025 Mar 12;16:1535279. doi: 10.3389/fgene.2025.1535279. eCollection 2025.
9
10
MiCK: a database of gut microbial genes linked with chemoresistance in cancer patients.
Database (Oxford). 2024 Dec 21;2024. doi: 10.1093/database/baae124.

本文引用的文献

1
A novel approach based on KATZ measure to predict associations of human microbiota with non-infectious diseases.
Bioinformatics. 2018 Apr 15;34(8):1440. doi: 10.1093/bioinformatics/btx773.
3
Disease Biomarkers for Precision Medicine: Challenges and Future Opportunities.
Genomics Proteomics Bioinformatics. 2017 Apr;15(2):57-58. doi: 10.1016/j.gpb.2017.04.001. Epub 2017 Apr 7.
4
The global health impact of vaginal dysbiosis.
Res Microbiol. 2017 Nov-Dec;168(9-10):859-864. doi: 10.1016/j.resmic.2017.02.003. Epub 2017 Mar 1.
5
The Human Intestinal Microbiome in Health and Disease.
N Engl J Med. 2016 Dec 15;375(24):2369-2379. doi: 10.1056/NEJMra1600266.
6
CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database.
Nucleic Acids Res. 2017 Jan 4;45(D1):D566-D573. doi: 10.1093/nar/gkw1004. Epub 2016 Oct 26.
7
NLLSS: Predicting Synergistic Drug Combinations Based on Semi-supervised Learning.
PLoS Comput Biol. 2016 Jul 14;12(7):e1004975. doi: 10.1371/journal.pcbi.1004975. eCollection 2016 Jul.
8
Drug-target interaction prediction: databases, web servers and computational models.
Brief Bioinform. 2016 Jul;17(4):696-712. doi: 10.1093/bib/bbv066. Epub 2015 Aug 17.
9
DCDB 2.0: a major update of the drug combination database.
Database (Oxford). 2014 Dec 23;2014:bau124. doi: 10.1093/database/bau124. Print 2014.
10
UniProt: a hub for protein information.
Nucleic Acids Res. 2015 Jan;43(Database issue):D204-12. doi: 10.1093/nar/gku989. Epub 2014 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验