Chum Sammie, Naveira Montalvo Alberto, Hassoun Soha
Department of Computer Science, Tufts University, Medford, MA 02155, United States.
Comput Struct Biotechnol J. 2025 Mar 11;27:1472-1481. doi: 10.1016/j.csbj.2025.03.016. eCollection 2025.
The gut microbiota, an extensive ecosystem harboring trillions of bacteria, plays a pivotal role in human health and disease, influencing diverse conditions from obesity to cancer. Among the microbiota's myriad functions, the capacity to metabolize drugs remains relatively unexplored despite its potential implications for drug efficacy and toxicity. Experimental methods are resource-intensive, prompting the need for innovative computational approaches. We present a computational analysis, termed MDM, aimed at predicting gut microbiota-mediated drug metabolism. This computational analysis incorporates data from diverse sources, e.g., UHGG, MagMD, MASI, KEGG, and RetroRules. An existing tool, PROXIMAL2, is used iteratively over all drug candidates from experimental databases queried against biotransformation rules from RetroRules to predict potential drug metabolites along with the enzyme commission number responsible for that biotransformation. These potential metabolites are then categorized into gut MDM metabolites by cross referencing UHGG. The analysis' efficacy is validated by its coverage on each of the experimental databases in the gut microbial context, being able to recall up to 74 % of experimental data and producing a list of potential metabolites, of which an average of about 65 % are relevant to the gut microbial context. Moreover, explorations into ranking metabolites, iterative applications to account for multi-step metabolic pathways, and potential applications in experimental studies showcase its versatility and potential impact beyond raw predictions. Overall, this study presents a promising computational framework for further research and applications gut MDM, drug development and human health.
肠道微生物群是一个包含数万亿细菌的庞大生态系统,在人类健康和疾病中起着关键作用,影响着从肥胖到癌症等多种病症。在微生物群的众多功能中,尽管其对药物疗效和毒性具有潜在影响,但药物代谢能力仍相对未被充分探索。实验方法资源密集,因此需要创新的计算方法。我们提出了一种名为MDM的计算分析方法,旨在预测肠道微生物群介导的药物代谢。这种计算分析整合了来自不同来源的数据,例如UHGG、MagMD、MASI、KEGG和RetroRules。对于从实验数据库中查询到的所有候选药物,利用现有工具PROXIMAL2,根据RetroRules的生物转化规则进行迭代,以预测潜在的药物代谢物以及负责该生物转化的酶委员会编号。然后,通过与UHGG交叉引用,将这些潜在代谢物分类为肠道MDM代谢物。该分析的有效性通过其在肠道微生物背景下对每个实验数据库的覆盖范围得到验证,能够召回高达74%的实验数据,并生成一份潜在代谢物列表,其中平均约65%与肠道微生物背景相关。此外,对代谢物排名的探索、考虑多步代谢途径的迭代应用以及在实验研究中的潜在应用,展示了其除原始预测之外的多功能性和潜在影响。总体而言,本研究为肠道MDM、药物开发和人类健康的进一步研究和应用提供了一个有前景的计算框架。