Suppr超能文献

基于微生物-药物-疾病网络的 RGCN 预测微生物-疾病关联

Microbe-Disease Association Prediction Using RGCN Through Microbe-Drug-Disease Network.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2023 Nov-Dec;20(6):3353-3362. doi: 10.1109/TCBB.2023.3247035. Epub 2023 Dec 25.

Abstract

Accumulating evidence has shown that microbes play significant roles in human health and diseases. Therefore, identifying microbe-disease associations is conducive to disease prevention. In this article, a predictive method called TNRGCN is designed for microbe-disease associations based on Microbe-Drug-Disease Network and Relation Graph Convolutional Network (RGCN). First, considering that indirect links between microbes and diseases will be increased by introducing drug related associations, we construct a Microbe-Drug-Disease tripartite network through data processing from four databases including Human Microbe-Disease Association Database (HMDAD), Disbiome Database, Microbe-Drug Association Database (MDAD) and Comparative Toxicoge-nomics Database (CTD). Second, we construct similarity networks for microbes, diseases and drugs via microbe function similarity, disease semantic similarity and Gaussian interaction profile kernel similarity, respectively. Based on the similarity networks, Principal Component Analysis (PCA) is utilized to extract main features of nodes. These features will be input into the RGCN as initial features. Finally, based on the tripartite network and initial features, we design two-layer RGCN to predict microbe-disease associations. Experimental results indicate that TNRGCN achieves best performance in cross validation compared with other methods. Meanwhile, case studies for Type 2 diabetes (T2D), Bipolar disorder and Autism demonstrate the favorable effectiveness of TNRGCN in association prediction.

摘要

越来越多的证据表明,微生物在人类健康和疾病中起着重要作用。因此,识别微生物-疾病关联有助于疾病预防。在本文中,设计了一种名为 TNRGCN 的预测方法,用于基于微生物-药物-疾病网络和关系图卷积网络 (RGCN) 的微生物-疾病关联。首先,考虑到通过引入药物相关关联,微生物和疾病之间的间接联系将会增加,我们通过从包括人类微生物-疾病关联数据库 (HMDAD)、Disbiome 数据库、微生物-药物关联数据库 (MDAD) 和比较毒理基因组学数据库 (CTD) 在内的四个数据库中进行数据处理,构建了一个微生物-药物-疾病三方网络。其次,我们通过微生物功能相似性、疾病语义相似性和高斯相互作用轮廓核相似性分别构建了微生物、疾病和药物的相似性网络。基于相似性网络,我们利用主成分分析 (PCA) 提取节点的主要特征。这些特征将作为初始特征输入到 RGCN 中。最后,基于三方网络和初始特征,我们设计了两层 RGCN 来预测微生物-疾病关联。实验结果表明,与其他方法相比,TNRGCN 在交叉验证中表现出最佳性能。同时,针对 2 型糖尿病 (T2D)、双相情感障碍和自闭症的案例研究表明,TNRGCN 在关联预测中具有良好的效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验