Suppr超能文献

将微流控技术与微电极阵列相结合用于研究神经元通信和轴突信号传播

Interfacing Microfluidics with Microelectrode Arrays for Studying Neuronal Communication and Axonal Signal Propagation.

作者信息

Lopes Cátia D F, Mateus José C, Aguiar Paulo

机构信息

i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; INEB - Instituto de Engenharia Biomédica, Universidade do Porto.

i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; INEB - Instituto de Engenharia Biomédica, Universidade do Porto; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto.

出版信息

J Vis Exp. 2018 Dec 8(142). doi: 10.3791/58878.

Abstract

Microelectrode arrays (MEAs) are widely used to study neuronal function in vitro. These devices allow concurrent non-invasive recording/stimulation of electrophysiological activity for long periods. However, the property of sensing signals from all sources around every microelectrode can become unfavorable when trying to understand communication and signal propagation in neuronal circuits. In a neuronal network, several neurons can be simultaneously activated and can generate overlapping action potentials, making it difficult to discriminate and track signal propagation. Considering this limitation, we have established an in vitro setup focused on assessing electrophysiological communication, which is able to isolate and amplify axonal signals with high spatial and temporal resolution. By interfacing microfluidic devices and MEAs, we are able to compartmentalize neuronal cultures with a well-controlled alignment of the axons and microelectrodes. This setup allows recordings of spike propagation with a high signal-to-noise ratio over the course of several weeks. Combined with specialized data analysis algorithms, it provides detailed quantification of several communication related properties such as propagation velocity, conduction failure, firing rate, anterograde spikes, and coding mechanisms. This protocol demonstrates how to create a compartmentalized neuronal culture setup over substrate-integrated MEAs, how to culture neurons in this setup, and how to successfully record, analyze and interpret the results from such experiments. Here, we show how the established setup simplifies the understanding of neuronal communication and axonal signal propagation. These platforms pave the way for new in vitro models with engineered and controllable neuronal network topographies. They can be used in the context of homogeneous neuronal cultures, or with co-culture configurations where, for example, communication between sensory neurons and other cell types is monitored and assessed. This setup provides very interesting conditions to study, for example, neurodevelopment, neuronal circuits, information coding, neurodegeneration and neuroregeneration approaches.

摘要

微电极阵列(MEA)被广泛用于体外研究神经元功能。这些设备能够长时间同时进行非侵入性的电生理活动记录/刺激。然而,当试图理解神经元回路中的通信和信号传播时,每个微电极周围所有来源的传感信号特性可能会变得不利。在神经元网络中,几个神经元可以同时被激活并产生重叠的动作电位,这使得区分和追踪信号传播变得困难。考虑到这一局限性,我们建立了一个专注于评估电生理通信的体外装置,它能够以高空间和时间分辨率分离和放大轴突信号。通过将微流控设备与MEA连接,我们能够将神经元培养物分隔开,使轴突和微电极具有良好控制的对齐方式。这种装置允许在数周的时间内以高信噪比记录尖峰传播。结合专门的数据分析算法,它可以对几个与通信相关的特性进行详细量化,如传播速度、传导失败、发放率、顺行尖峰和编码机制。本方案展示了如何在基于衬底集成的MEA上创建一个分隔的神经元培养装置,如何在该装置中培养神经元,以及如何成功记录、分析和解释此类实验的结果。在这里,我们展示了所建立的装置如何简化对神经元通信和轴突信号传播的理解。这些平台为具有工程化和可控神经元网络拓扑结构的新型体外模型铺平了道路。它们可用于同质神经元培养的背景下,或用于共培养配置,例如监测和评估感觉神经元与其他细胞类型之间的通信。这种装置提供了非常有趣的条件来研究,例如神经发育、神经元回路、信息编码、神经退行性变和神经再生方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验