文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

无线传感器网络中的动态障碍覆盖用于智能电网。

Dynamic Barrier Coverage in a Wireless Sensor Network for Smart Grids.

机构信息

School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.

School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan 430073, China.

出版信息

Sensors (Basel). 2018 Dec 22;19(1):41. doi: 10.3390/s19010041.


DOI:10.3390/s19010041
PMID:30583532
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6338988/
Abstract

The development of engineering technology such as inspection robots (IR) for transmission lines and wireless sensor networks (WSN) are widely used in the field of smart grid monitoring. However, how to integrate inspection robots into wireless sensor networks is still a great challenge to form an efficient dynamic monitoring network for transmission lines. To address this problem, a dynamic barrier coverage (DBC) method combining inspection robot and wireless sensor network (WSN) is proposed to realize a low-cost, energy-saving and dynamic smart grid-oriented sensing system based on mobile wireless sensor network. To establish an effective smart grid monitoring system, this research focuses on the design of an effective and safe dynamic network coverage and network nodes deployment method. Multiple simulation scenarios are implemented to explore the variation of network performance with different parameters. In addition, the dynamic barrier coverage method for the actual scene of smart grid monitoring considers the balance between network performance and financial costs.

摘要

检测机器人(IR)和无线传感器网络(WSN)等工程技术的发展在智能电网监测领域得到了广泛应用。然而,如何将检测机器人集成到无线传感器网络中,对于形成高效的输电线路动态监测网络仍然是一个巨大的挑战。为了解决这个问题,提出了一种将检测机器人和无线传感器网络(WSN)相结合的动态障碍覆盖(DBC)方法,以实现基于移动无线传感器网络的低成本、节能、面向智能电网的动态传感系统。为了建立有效的智能电网监测系统,本研究侧重于设计一种有效和安全的动态网络覆盖和网络节点部署方法。通过多个仿真场景来探索不同参数对网络性能的变化。此外,针对智能电网监测的实际场景,动态障碍覆盖方法考虑了网络性能和财务成本之间的平衡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c38/6338988/afbfa6ef8daf/sensors-19-00041-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c38/6338988/96ea5083fc44/sensors-19-00041-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c38/6338988/49375a501b74/sensors-19-00041-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c38/6338988/f103cf5045cb/sensors-19-00041-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c38/6338988/d31955aa8eb6/sensors-19-00041-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c38/6338988/2dc9c726683f/sensors-19-00041-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c38/6338988/2112b487cd23/sensors-19-00041-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c38/6338988/a98b75bcb838/sensors-19-00041-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c38/6338988/b2bae8914c52/sensors-19-00041-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c38/6338988/5bc286b0971e/sensors-19-00041-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c38/6338988/6d06acb71e68/sensors-19-00041-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c38/6338988/9fd868616422/sensors-19-00041-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c38/6338988/3bc21e016cc9/sensors-19-00041-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c38/6338988/708286ace6a5/sensors-19-00041-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c38/6338988/b09c258062b0/sensors-19-00041-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c38/6338988/afbfa6ef8daf/sensors-19-00041-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c38/6338988/96ea5083fc44/sensors-19-00041-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c38/6338988/49375a501b74/sensors-19-00041-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c38/6338988/f103cf5045cb/sensors-19-00041-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c38/6338988/d31955aa8eb6/sensors-19-00041-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c38/6338988/2dc9c726683f/sensors-19-00041-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c38/6338988/2112b487cd23/sensors-19-00041-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c38/6338988/a98b75bcb838/sensors-19-00041-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c38/6338988/b2bae8914c52/sensors-19-00041-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c38/6338988/5bc286b0971e/sensors-19-00041-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c38/6338988/6d06acb71e68/sensors-19-00041-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c38/6338988/9fd868616422/sensors-19-00041-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c38/6338988/3bc21e016cc9/sensors-19-00041-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c38/6338988/708286ace6a5/sensors-19-00041-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c38/6338988/b09c258062b0/sensors-19-00041-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c38/6338988/afbfa6ef8daf/sensors-19-00041-g015.jpg

相似文献

[1]
Dynamic Barrier Coverage in a Wireless Sensor Network for Smart Grids.

Sensors (Basel). 2018-12-22

[2]
Multi-Robot Cyber Physical System for Sensing Environmental Variables of Transmission Line.

Sensors (Basel). 2018-9-18

[3]
A Robot Hybrid Hierarchical Network for Sensing Environmental Variables of a Smart Grid.

Sensors (Basel). 2020-9-26

[4]
Secure and Time-Aware Communication of Wireless Sensors Monitoring Overhead Transmission Lines.

Sensors (Basel). 2017-7-11

[5]
Analysis and Prospect of the Application of Wireless Sensor Networks in Ubiquitous Power Internet of Things.

Comput Intell Neurosci. 2022

[6]
Energy-Efficient Multi-Disjoint Path Opportunistic Node Connection Routing Protocol in Wireless Sensor Networks for Smart Grids.

Sensors (Basel). 2019-9-1

[7]
An Energy-Efficient Coverage Enhancement Strategy for Wireless Sensor Networks Based on a Dynamic Partition Algorithm for Cellular Grids and an Improved Vampire Bat Optimizer.

Sensors (Basel). 2020-1-22

[8]
Software Defined Networking for Improved Wireless Sensor Network Management: A Survey.

Sensors (Basel). 2017-5-4

[9]
Proposition and Real-Time Implementation of an Energy-Aware Routing Protocol for a Software Defined Wireless Sensor Network.

Sensors (Basel). 2019-6-18

[10]
Novel Approach Sizing and Routing of Wireless Sensor Networks for Applications in Smart Cities.

Sensors (Basel). 2021-7-9

引用本文的文献

[1]
Evaluation of Smart Sensors for Subway Electric Motor Escalators through AHP-Gaussian Method.

Sensors (Basel). 2023-4-20

[2]
An Explainable Evolving Fuzzy Neural Network to Predict the k Barriers for Intrusion Detection Using a Wireless Sensor Network.

Sensors (Basel). 2022-7-21

[3]
A hybrid approach to enhance the lifespan of WSNs in nuclear power plant monitoring system.

Sci Rep. 2022-3-14

[4]
A Comprehensive Review on Smart Grids: Challenges and Opportunities.

Sensors (Basel). 2021-10-21

[5]
Deployment Optimization Method of Multistatic Radar for Constructing Circular Barrier Coverage.

Sensors (Basel). 2021-9-30

[6]
A Robot Hybrid Hierarchical Network for Sensing Environmental Variables of a Smart Grid.

Sensors (Basel). 2020-9-26

[7]
Method for Localization Aerial Target in AC Electric Field Based on Sensor Circular Array.

Sensors (Basel). 2020-3-12

[8]
An Energy-Efficient Clustering Routing Protocol Based on a High-QoS Node Deployment with an Inter-Cluster Routing Mechanism in WSNs.

Sensors (Basel). 2019-6-19

本文引用的文献

[1]
Multi-Robot Cyber Physical System for Sensing Environmental Variables of Transmission Line.

Sensors (Basel). 2018-9-18

[2]
Achieving Crossed Strong Barrier Coverage in Wireless Sensor Network.

Sensors (Basel). 2018-2-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索