Suppr超能文献

通过合成生物学进行微生物修复污染物的替代策略。

Alternative Strategies for Microbial Remediation of Pollutants via Synthetic Biology.

作者信息

Jaiswal Shweta, Shukla Pratyoosh

机构信息

Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India.

出版信息

Front Microbiol. 2020 May 19;11:808. doi: 10.3389/fmicb.2020.00808. eCollection 2020.

Abstract

Continuous contamination of the environment with xenobiotics and related recalcitrant compounds has emerged as a serious pollution threat. Bioremediation is the key to eliminating persistent contaminants from the environment. Traditional bioremediation processes show limitations, therefore it is necessary to discover new bioremediation technologies for better results. In this review we provide an outlook of alternative strategies for bioremediation via synthetic biology, including exploring the prerequisites for analysis of research data for developing synthetic biological models of microbial bioremediation. Moreover, cell coordination in synthetic microbial community, cell signaling, and quorum sensing as engineered for enhanced bioremediation strategies are described, along with promising gene editing tools for obtaining the host with target gene sequences responsible for the degradation of recalcitrant compounds. The synthetic genetic circuit and two-component regulatory system (TCRS)-based microbial biosensors for detection and bioremediation are also briefly explained. These developments are expected to increase the efficiency of bioremediation strategies for best results.

摘要

环境持续受到异生素及相关难降解化合物的污染,已成为严重的污染威胁。生物修复是从环境中消除持久性污染物的关键。传统的生物修复过程存在局限性,因此有必要探索新的生物修复技术以取得更好的效果。在本综述中,我们展望了通过合成生物学进行生物修复的替代策略,包括探索为开发微生物生物修复的合成生物学模型而分析研究数据的先决条件。此外,还描述了合成微生物群落中的细胞协调、细胞信号传导以及为增强生物修复策略而设计的群体感应,以及用于获得具有负责难降解化合物降解的靶基因序列的宿主的有前景的基因编辑工具。还简要解释了基于合成遗传电路和双组分调节系统(TCRS)的用于检测和生物修复的微生物生物传感器。这些进展有望提高生物修复策略的效率以取得最佳效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e25/7249858/c7891df235fc/fmicb-11-00808-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验