Department of Physiological Sciences (S.J.L.), University of Arizona, Tucson.
Department of Medicine, Columbia University Medical Center, New York (L.T.-G.).
Circulation. 2019 Mar 19;139(12):1517-1529. doi: 10.1161/CIRCULATIONAHA.118.034549.
Although the genetic causes of hypertrophic cardiomyopathy (HCM) are widely recognized, considerable lag in the development of targeted therapeutics has limited interventions to symptom palliation. This is in part attributable to an incomplete understanding of how point mutations trigger pathogenic remodeling. As a further complication, similar mutations within sarcomeric genes can result in differential disease severity, highlighting the need to understand the mechanism of progression at the molecular level. One pathway commonly linked to HCM progression is calcium homeostasis dysregulation, though how specific mutations disrupt calcium homeostasis remains unclear.
To evaluate the effects of early intervention in calcium homeostasis, we used 2 mouse models of sarcomeric HCM (cardiac troponin T R92L and R92W) with differential myocellular calcium dysregulation and disease presentation. Two modes of intervention were tested: inhibition of the autoactivated calcium-dependent kinase (calmodulin kinase II [CaMKII]) via the AC3I peptide and diltiazem, an L-type calcium channel antagonist. Two-dimensional echocardiography was used to determine cardiac function and left ventricular remodeling, and atrial remodeling was monitored via atrial mass. Sarcoplasmic reticulum CaATPase activity was measured as an index of myocellular calcium handling and coupled to its regulation via the phosphorylation status of phospholamban.
We measured an increase in phosphorylation of CaMKII in R92W animals by 6 months of age, indicating increased autonomous activity of the kinase in these animals. Inhibition of CaMKII led to recovery of diastolic function and partially blunted atrial remodeling in R92W mice. This improved function was coupled to increased sarcoplasmic reticulum CaATPase activity in the R92W animals despite reduction of CaMKII activation, likely indicating improvement in myocellular calcium handling. In contrast, inhibition of CaMKII in R92L animals led to worsened myocellular calcium handling, remodeling, and function. Diltiazem-HCl arrested diastolic dysfunction progression in R92W animals only, with no improvement in cardiac remodeling in either genotype.
We propose a highly specific, mutation-dependent role of activated CaMKII in HCM progression and a precise therapeutic target for clinical management of HCM in selected cohorts. Moreover, the mutation-specific response elicited with diltiazem highlights the necessity to understand mutation-dependent progression at a molecular level to precisely intervene in disease progression.
尽管肥厚型心肌病(HCM)的遗传原因已被广泛认识,但靶向治疗的发展仍存在较大滞后,这限制了对症状缓解的干预。这在一定程度上是由于人们对导致致病重构的点突变的机制理解不够完整。此外,肌节基因中的类似突变可导致疾病严重程度的差异,这突出表明需要在分子水平上了解进展的机制。钙稳态失调是与 HCM 进展通常相关的途径之一,但特定突变如何破坏钙稳态尚不清楚。
为了评估钙稳态早期干预的效果,我们使用了两种肌节 HCM 的小鼠模型(心肌肌钙蛋白 T R92L 和 R92W),它们具有不同的肌细胞钙调节紊乱和疾病表现。测试了两种干预模式:通过 AC3I 肽和地尔硫卓抑制自动激活的钙依赖性激酶(钙调蛋白激酶 II [CaMKII]),地尔硫卓是一种 L 型钙通道拮抗剂。二维超声心动图用于确定心功能和左心室重构,通过心房质量监测心房重构。肌浆网 CaATP 酶活性作为肌细胞钙处理的指标进行测量,并通过磷蛋白的磷酸化状态与其调节相关联。
我们在 6 月龄的 R92W 动物中测量到 CaMKII 的磷酸化增加,表明这些动物中激酶的自主活性增加。抑制 CaMKII 导致 R92W 小鼠的舒张功能恢复,部分减弱了心房重构。尽管 CaMKII 的激活减少,但这种功能的改善与 R92W 动物的肌浆网 CaATP 酶活性增加相关,这可能表明肌细胞钙处理得到改善。相比之下,抑制 R92L 动物中的 CaMKII 导致肌细胞钙处理、重构和功能恶化。地尔硫卓仅在 R92W 动物中阻止了舒张功能障碍的进展,而在两种基因型中均未改善心脏重构。
我们提出了在 HCM 进展中高度特异、突变依赖的激活 CaMKII 的作用,并提出了针对特定人群 HCM 临床管理的精确治疗靶点。此外,地尔硫卓引起的突变特异性反应突出表明,有必要在分子水平上了解突变依赖性进展,以精确干预疾病进展。