Genetics Unit, IRCCS Istituto Centro S. Giovanni di Dio, Fatebenefratelli, 25123, Brescia, Italy.
Department of Molecular and Translational Medicine, Biology and Genetic Unit, University of Brescia, 25123, Brescia, Italy.
BMC Genomics. 2018 Dec 27;19(1):963. doi: 10.1186/s12864-018-5364-8.
A-to-I RNA editing is a co-/post-transcriptional modification catalyzed by ADAR enzymes, that deaminates Adenosines (A) into Inosines (I). Most of known editing events are located within inverted ALU repeats, but they also occur in coding sequences and may alter the function of encoded proteins. RNA editing contributes to generate transcriptomic diversity and it is found altered in cancer, autoimmune and neurological disorders. Emerging evidences indicate that editing process could be influenced by genetic variations, biological and environmental variables.
We analyzed RNA editing levels in human blood using RNA-seq data from 459 healthy individuals and identified 2079 sites consistently edited in this tissue. As expected, analysis of gene expression revealed that ADAR is the major contributor to editing on these sites, explaining ~ 13% of observed variability. After removing ADAR effect, we found significant associations for 1122 genes, mainly involved in RNA processing. These genes were significantly enriched in genes encoding proteins interacting with ADARs, including 276 potential ADARs interactors and 9 ADARs direct partners. In addition, our analysis revealed several factors potentially influencing RNA editing in blood, including cell composition, age, Body Mass Index, smoke and alcohol consumption. Finally, we identified genetic loci associated with editing levels, including known ADAR eQTLs and a small region on chromosome 7, containing LOC730338, a lincRNA gene that appears to modulate ADARs mRNA expression.
Our data provides a detailed picture of the most relevant RNA editing events and their variability in human blood, giving interesting insights on potential mechanisms behind this post-transcriptional modification and its regulation in this tissue.
A-to-I RNA 编辑是一种由 ADAR 酶催化的共/转录后修饰,可使腺苷(A)脱氨为肌苷(I)。大多数已知的编辑事件位于反向 ALU 重复序列内,但也发生在编码序列中,并可能改变编码蛋白的功能。RNA 编辑有助于产生转录组多样性,并在癌症、自身免疫和神经退行性疾病中发现存在改变。新出现的证据表明,编辑过程可能受到遗传变异、生物和环境变量的影响。
我们使用来自 459 名健康个体的 RNA-seq 数据分析了人类血液中的 RNA 编辑水平,并在该组织中鉴定出 2079 个一致编辑的位点。正如预期的那样,基因表达分析表明,ADAR 是这些位点编辑的主要贡献者,解释了观察到的变异性的约 13%。在去除 ADAR 效应后,我们发现了 1122 个基因的显著关联,这些基因主要参与 RNA 加工。这些基因显著富集在与 ADARs 相互作用的蛋白质编码基因中,包括 276 个潜在的 ADAR 相互作用蛋白和 9 个 ADAR 直接伴侣。此外,我们的分析还揭示了一些可能影响血液中 RNA 编辑的因素,包括细胞组成、年龄、体重指数、吸烟和饮酒。最后,我们确定了与编辑水平相关的遗传位点,包括已知的 ADAR eQTLs 和染色体 7 上的一个小区域,该区域包含 LOC730338,这是一个 lincRNA 基因,似乎可以调节 ADARs mRNA 的表达。
我们的数据提供了人类血液中最相关的 RNA 编辑事件及其变异性的详细描述,为这种转录后修饰及其在该组织中的调控背后的潜在机制提供了有趣的见解。