ALCEDIAG/Sys2Diag, CNRS UMR 9005, Parc Euromédecine, Montpellier, France.
Les Toises. Center for Psychiatry and Psychotherapy, Lausanne, Switzerland.
Transl Psychiatry. 2022 May 4;12(1):182. doi: 10.1038/s41398-022-01938-6.
In clinical practice, differentiating Bipolar Disorder (BD) from unipolar depression is a challenge due to the depressive symptoms, which are the core presentations of both disorders. This misdiagnosis during depressive episodes results in a delay in proper treatment and a poor management of their condition. In a first step, using A-to-I RNA editome analysis, we discovered 646 variants (366 genes) differentially edited between depressed patients and healthy volunteers in a discovery cohort of 57 participants. After using stringent criteria and biological pathway analysis, candidate biomarkers from 8 genes were singled out and tested in a validation cohort of 410 participants. Combining the selected biomarkers with a machine learning approach achieved to discriminate depressed patients (n = 267) versus controls (n = 143) with an AUC of 0.930 (CI 95% [0.879-0.982]), a sensitivity of 84.0% and a specificity of 87.1%. In a second step by selecting among the depressed patients those with unipolar depression (n = 160) or BD (n = 95), we identified a combination of 6 biomarkers which allowed a differential diagnosis of bipolar disorder with an AUC of 0.935 and high specificity (Sp = 84.6%) and sensitivity (Se = 90.9%). The association of RNA editing variants modifications with depression subtypes and the use of artificial intelligence allowed developing a new tool to identify, among depressed patients, those suffering from BD. This test will help to reduce the misdiagnosis delay of bipolar patients, leading to an earlier implementation of a proper treatment.
在临床实践中,由于双相情感障碍(BD)和单相抑郁症的核心表现均为抑郁症状,因此两者的区分极具挑战。在抑郁发作期间的误诊会导致治疗延迟和病情管理不善。在第一步中,我们使用 A-to-I RNA 编辑组分析,在一个包含 57 名参与者的发现队列中发现了 646 个差异编辑变体(366 个基因),这些变体存在于抑郁患者和健康志愿者之间。在使用严格的标准和生物学途径分析之后,我们从 8 个基因中挑选出候选生物标志物,并在一个包含 410 名参与者的验证队列中进行了测试。通过将选定的生物标志物与机器学习方法相结合,我们实现了对患有抑郁症(n=267)和健康对照组(n=143)的区分,其 AUC 为 0.930(95%CI [0.879-0.982]),灵敏度为 84.0%,特异性为 87.1%。在第二步中,我们从抑郁患者中选择那些患有单相抑郁症(n=160)或 BD(n=95)的患者,确定了 6 种生物标志物的组合,其可以将 BD 与单相抑郁症进行区分,其 AUC 为 0.935,且具有高特异性(Sp=84.6%)和高灵敏度(Se=90.9%)。RNA 编辑变体修饰与抑郁亚型的关联以及人工智能的使用使我们能够开发一种新的工具,用于识别抑郁患者中的 BD 患者。该测试将有助于减少双相患者的误诊延迟,从而更早地实施适当的治疗。