Laboratory for Nonnatural Amino Acid Technology, RIKEN Center for Biosystems Dynamics Research (BDR), 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
Int J Mol Sci. 2018 Dec 26;20(1):92. doi: 10.3390/ijms20010092.
The L-shape form of tRNA is maintained by tertiary interactions occurring in the core. Base changes in this domain can cause structural defects and impair tRNA activity. Here, we report on a method to safely engineer structural variations in this domain utilizing the noncanonical scaffold of tRNA. First, we constructed a naïve hybrid between archaeal tRNA and tRNA, which consisted of the acceptor and T stems of tRNA and the other parts of tRNA. This hybrid tRNA efficiently translated the UAG codon to 3-iodotyrosine in cells, when paired with a variant of the archaeal tyrosyl-tRNA synthetase. The amber suppression efficiency was slightly lower than that of the "bench-mark" archaeal tRNA suppressor assuming the canonical structure. After a series of modifications to this hybrid tRNA, we obtained two artificial types of tRNA: ZtRNA had an augmented D (auD) helix in a noncanonical form and the D and T loops bound by the standard tertiary base pairs, and YtRNA had a canonical auD helix and non-standard interloop interactions. It was then suggested that the ZtRNA scaffold could also support the glycylation and glutaminylation of tRNA. The synthetic diversity of tRNA would help create new tRNA⁻aminoacyl-tRNA synthetase pairs for reprogramming the genetic code.
tRNA 的 L 形结构由核心区域的三级相互作用维持。该结构域中的碱基变化可导致结构缺陷并损害 tRNA 的活性。在这里,我们报告了一种利用 tRNA 的非典型支架安全构建该结构域结构变异的方法。首先,我们构建了一个原始的古菌 tRNA 与 tRNA 之间的杂种,它由 tRNA 的受体和 T 茎以及 tRNA 的其他部分组成。当与变体的古菌酪氨酸-tRNA 合成酶配对时,这种杂种 tRNA 可有效地将 UAG 密码子翻译为 3-碘酪氨酸。在假设具有规范结构的情况下,琥珀抑制效率略低于“基准”古菌 tRNA 抑制剂。在对该杂种 tRNA 进行了一系列修饰后,我们获得了两种人工类型的 tRNA:ZtRNA 具有非规范形式的增强 D(auD)螺旋和由标准三级碱基对结合的 D 和 T 环,而 YtRNA 具有规范的 auD 螺旋和非标准的环间相互作用。然后表明,ZtRNA 支架还可以支持 tRNA 的糖基化和谷氨酰胺化。tRNA 的合成多样性将有助于为重新编程遗传密码创建新的 tRNA⁻氨基酸-tRNA 合成酶对。