Suppr超能文献

互斥的吡咯赖氨酰-tRNA 合成酶/tRNA 对。

Mutually orthogonal pyrrolysyl-tRNA synthetase/tRNA pairs.

机构信息

Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.

出版信息

Nat Chem. 2018 Aug;10(8):831-837. doi: 10.1038/s41557-018-0052-5. Epub 2018 May 28.

Abstract

Genetically encoding distinct non-canonical amino acids (ncAAs) into proteins synthesized in cells requires mutually orthogonal aminoacyl-tRNA synthetase (aaRS)/tRNA pairs. The pyrrolysyl-tRNA synthetase/tRNA pair from Methanosarcina mazei (Mm) has been engineered to incorporate diverse ncAAs and is commonly considered an ideal pair for genetic code expansion. However, finding new aaRS/tRNA pairs that share the advantages of the MmPylRS/MmtRNA pair and are orthogonal to both endogenous aaRS/tRNA pairs and the MmPylRS/MmtRNA pair has proved challenging. Here we demonstrate that several ΔNPylRS/tRNA pairs, in which PylRS lacks an N-terminal domain, are active, orthogonal and efficiently incorporate ncAAs in Escherichia coli. We create new PylRS/tRNA pairs that are mutually orthogonal to the MmPylRS/MmtRNA pair and show that transplanting mutations that reprogram the ncAA specificity of MmPylRS into the new PylRS reprograms its substrate specificity. Finally, we show that distinct PylRS/tRNA-derived pairs can function in the same cell, decode distinct codons and incorporate distinct ncAAs.

摘要

将不同的非天然氨基酸(ncAAs)基因编码到细胞中合成的蛋白质中需要相互正交的氨酰-tRNA 合成酶(aaRS)/tRNA 对。已经对来源于 Methanosarcina mazei(Mm)的吡咯赖氨酸-tRNA 合成酶/tRNA 对进行了工程改造,以掺入各种 ncAAs,通常被认为是遗传密码扩展的理想配对。然而,寻找具有 MmPylRS/MmtRNA 对优点且与内源性 aaRS/tRNA 对和 MmPylRS/MmtRNA 对均正交的新 aaRS/tRNA 对一直具有挑战性。在这里,我们证明了几个缺乏 N 端结构域的 ΔNPylRS/tRNA 对在大肠杆菌中是活跃的、正交的并且能够有效地掺入 ncAAs。我们创建了新的 PylRS/tRNA 对,它们与 MmPylRS/MmtRNA 对是相互正交的,并表明将 MmPylRS 的 ncAA 特异性重新编程的突变移植到新的 PylRS 中可以重新编程其底物特异性。最后,我们表明不同的 PylRS/tRNA 衍生对可以在同一细胞中发挥作用,解码不同的密码子并掺入不同的 ncAAs。

相似文献

1
Mutually orthogonal pyrrolysyl-tRNA synthetase/tRNA pairs.
Nat Chem. 2018 Aug;10(8):831-837. doi: 10.1038/s41557-018-0052-5. Epub 2018 May 28.
2
An Evolved Methanomethylophilus alvus Pyrrolysyl-tRNA Synthetase/tRNA Pair Is Highly Active and Orthogonal in Mammalian Cells.
Biochemistry. 2019 Feb 5;58(5):387-390. doi: 10.1021/acs.biochem.8b00808. Epub 2018 Sep 27.
4
Update of the Pyrrolysyl-tRNA Synthetase/tRNA Pair and Derivatives for Genetic Code Expansion.
J Bacteriol. 2023 Feb 22;205(2):e0038522. doi: 10.1128/jb.00385-22. Epub 2023 Jan 25.
5
Methanomethylophilus alvus Mx1201 Provides Basis for Mutual Orthogonal Pyrrolysyl tRNA/Aminoacyl-tRNA Synthetase Pairs in Mammalian Cells.
ACS Chem Biol. 2018 Nov 16;13(11):3087-3096. doi: 10.1021/acschembio.8b00571. Epub 2018 Oct 12.
6
Engineering Pyrrolysine Systems for Genetic Code Expansion and Reprogramming.
Chem Rev. 2024 Oct 9;124(19):11008-11062. doi: 10.1021/acs.chemrev.4c00243. Epub 2024 Sep 5.
7
The Pyrrolysyl-tRNA Synthetase Activity can be Improved by a P188 Mutation that Stabilizes the Full-Length Enzyme.
J Mol Biol. 2022 Apr 30;434(8):167453. doi: 10.1016/j.jmb.2022.167453. Epub 2022 Jan 13.
8
Pyrrolysyl-tRNA synthetase-tRNA(Pyl) structure reveals the molecular basis of orthogonality.
Nature. 2009 Feb 26;457(7233):1163-7. doi: 10.1038/nature07611. Epub 2008 Dec 31.
9
tRNA: Structure, function, and applications.
RNA Biol. 2018;15(4-5):441-452. doi: 10.1080/15476286.2017.1356561. Epub 2017 Sep 13.
10
Recognition of non-alpha-amino substrates by pyrrolysyl-tRNA synthetase.
J Mol Biol. 2009 Feb 6;385(5):1352-60. doi: 10.1016/j.jmb.2008.11.059. Epub 2008 Dec 11.

引用本文的文献

2
Directed evolution of aminoacyl-tRNA synthetases through in vivo hypermutation.
Nat Commun. 2025 May 24;16(1):4832. doi: 10.1038/s41467-025-60120-w.
3
Cys-tRNAj as a Second Translation Initiator for Priming Proteins with Cysteine in Bacteria.
ACS Omega. 2025 Jan 29;10(5):4548-4560. doi: 10.1021/acsomega.4c08326. eCollection 2025 Feb 11.
4
Fluorescent labeling strategies for molecular bioimaging.
Biophys Rep (N Y). 2025 Mar 12;5(1):100200. doi: 10.1016/j.bpr.2025.100200. Epub 2025 Feb 12.
5
Pyrrolysine Aminoacyl-tRNA Synthetase as a Tool for Expanding the Genetic Code.
Int J Mol Sci. 2025 Jan 10;26(2):539. doi: 10.3390/ijms26020539.
6
Beyond , Pharmaceutical Molecule Production in Cell-Free Systems and the Use of Noncanonical Amino Acids Therein.
Chem Rev. 2025 Feb 12;125(3):1303-1331. doi: 10.1021/acs.chemrev.4c00126. Epub 2025 Jan 22.
7
Genetic Code Expansion: Recent Developments and Emerging Applications.
Chem Rev. 2025 Jan 22;125(2):523-598. doi: 10.1021/acs.chemrev.4c00216. Epub 2024 Dec 31.
8
Automated orthogonal tRNA generation.
Nat Chem Biol. 2025 May;21(5):657-667. doi: 10.1038/s41589-024-01782-3. Epub 2024 Dec 20.
9
Designing artificial fluorescent proteins and biosensors by genetically encoding molecular rotor-based amino acids.
Nat Chem. 2024 Dec;16(12):1960-1971. doi: 10.1038/s41557-024-01675-x. Epub 2024 Nov 28.
10
Noncanonical Amino Acid Tools and Their Application to Membrane Protein Studies.
Chem Rev. 2024 Nov 27;124(22):12498-12550. doi: 10.1021/acs.chemrev.4c00181. Epub 2024 Nov 7.

本文引用的文献

1
A semi-synthetic organism that stores and retrieves increased genetic information.
Nature. 2017 Nov 29;551(7682):644-647. doi: 10.1038/nature24659.
2
Crystal structures reveal an elusive functional domain of pyrrolysyl-tRNA synthetase.
Nat Chem Biol. 2017 Dec;13(12):1261-1266. doi: 10.1038/nchembio.2497. Epub 2017 Oct 16.
3
Expanding and reprogramming the genetic code.
Nature. 2017 Oct 4;550(7674):53-60. doi: 10.1038/nature24031.
4
Biosynthesis and genetic encoding of phosphothreonine through parallel selection and deep sequencing.
Nat Methods. 2017 Jul;14(7):729-736. doi: 10.1038/nmeth.4302. Epub 2017 May 29.
5
Designing logical codon reassignment - Expanding the chemistry in biology.
Chem Sci. 2015 Jan 1;6(1):50-69. doi: 10.1039/c4sc01534g. Epub 2014 Jul 14.
6
Defining synonymous codon compression schemes by genome recoding.
Nature. 2016 Nov 3;539(7627):59-64. doi: 10.1038/nature20124. Epub 2016 Oct 24.
7
Design, synthesis, and testing toward a 57-codon genome.
Science. 2016 Aug 19;353(6301):819-22. doi: 10.1126/science.aaf3639.
10
Concerted, rapid, quantitative, and site-specific dual labeling of proteins.
J Am Chem Soc. 2014 Jun 4;136(22):7785-8. doi: 10.1021/ja4129789. Epub 2014 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验