Suppr超能文献

使用分类与回归树分析预测性少数女性的宫颈癌筛查情况。

Predicting cervical cancer screening among sexual minority women using Classification and Regression Tree analysis.

作者信息

Greene Madelyne Z, Hughes Tonda L, Hanlon Alexandra, Huang Liming, Sommers Marilyn S, Meghani Salimah H

机构信息

University of Wisconsin-Madison Department of Obstetrics and Gynecology, 610 Walnut St. Suite #667, Madison 53726, WI, USA.

Columbia University School of Nursing, 560 W 168th St, New York 10032, NY, USA.

出版信息

Prev Med Rep. 2018 Nov 12;13:153-159. doi: 10.1016/j.pmedr.2018.11.007. eCollection 2019 Mar.

Abstract

Cervical cancer screening is a critical preventive healthcare service for all women. Sexual minority women (SMW) in the United States experience multiple health disparities including decreased access to and use of cervical cancer screening. The mechanisms driving these disparities are not clear and SMW with multiple marginalized identities may be more likely to miss recommended cervical cancer screening. This study aimed to identify subgroups of SMW that are more and less likely to be screened for cervical cancer according to American Cancer Society guidelines. We used cross-sectional data from the latest (2010-2012) wave of the Chicago Health and Life Experiences of Women (CHLEW) Study (N = 691). Informed by intersectionality theory, we performed classification and regression tree (CART) modeling to construct a data-driven, predictive model of subgroups of SMW who were more and less likely to receive guideline-recommended screening. Notably, the CART model did not include commonly tested variables such as race/ethnicity or level of income or education. The model did identify subgroups with low likelihood of receiving screening and several novel variables that may be important in understanding SMW's use of cervical cancer screening; lifetime number of sexual partners, age at drinking onset, childhood physical abuse, and internalized homonegativity. Our results point to the importance of early life experiences and identity development processes in shaping patterns of preventive healthcare use among adult SMW. Our analysis also demonstrated the potential value of CART modeling techniques for evaluating how multiple variables interact in complex ways to predict cervical cancer screening.

摘要

宫颈癌筛查是一项针对所有女性的关键预防性医疗服务。美国的性少数群体女性(SMW)面临多种健康差距,包括获得和接受宫颈癌筛查的机会减少。导致这些差距的机制尚不清楚,具有多重边缘化身份的SMW可能更有可能错过推荐的宫颈癌筛查。本研究旨在根据美国癌症协会指南,确定宫颈癌筛查可能性较高和较低的SMW亚组。我们使用了来自芝加哥女性健康与生活经历(CHLEW)研究最新(2010 - 2012年)浪潮的横断面数据(N = 691)。基于交叉性理论,我们进行了分类与回归树(CART)建模,以构建一个数据驱动的预测模型,用于预测接受或不接受指南推荐筛查的SMW亚组。值得注意的是,CART模型未包括种族/民族、收入水平或教育程度等常见测试变量。该模型确实识别出了接受筛查可能性较低的亚组以及几个在理解SMW对宫颈癌筛查的使用方面可能很重要的新变量;性伴侣终身数量、开始饮酒的年龄、童年身体虐待以及内化的同性恋消极态度。我们的结果表明了早期生活经历和身份发展过程在塑造成年SMW预防性医疗使用模式方面的重要性。我们的分析还证明了CART建模技术在评估多个变量如何以复杂方式相互作用以预测宫颈癌筛查方面的潜在价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47a4/6305684/259e7d5c889d/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验