Suppr超能文献

与宿主 L 感染过程中糖的分配。

Sugar Partitioning between and Its Host L during Infection.

机构信息

Department of Plant Biology, Carnegie Science, Stanford, California 94305

Department of Biology, Stanford University, Stanford, California 94305.

出版信息

Plant Physiol. 2019 Apr;179(4):1373-1385. doi: 10.1104/pp.18.01435. Epub 2018 Dec 28.

Abstract

The basidiomycete causes smut disease in maize () by infecting all plant aerial tissues. The infection causes leaf chlorosis and stimulates the plant to produce nutrient-rich niches (i.e. tumors), where the fungus can proliferate and complete its life cycle. Previous studies have recorded high accumulation of soluble sugars and starch within these tumors. Using interdisciplinary approaches, we found that the sugar accumulation within tumors coincided with the differential expression of plant sugars will eventually be exported transporters and the proton/sucrose symporter To accumulate plant sugars, the fungus deploys its own set of sugar transporters, generating a sugar gradient within the fungal cytosol, recorded by expressing a cytosolic glucose (Glc) Förster resonance energy transfer sensor. Our measurements indicated likely elevated Glc levels in hyphal tips during infection. Growing infected plants under dark conditions led to decreased plant sugar levels and loss of the fungal tip Glc gradient, supporting a tight link between fungal sugar acquisition and host supplies. Finally, the fungal infection causes a strong imbalance in plant sugar distribution, ultimately impacting seed set and yield.

摘要

担子菌通过感染所有植物气生组织引起玉米黑粉病。这种感染会导致叶片失绿,并刺激植物产生富含营养的小生境(即肿瘤),真菌可以在这些小生境中增殖并完成其生命周期。以前的研究记录了这些肿瘤内可溶糖和淀粉的大量积累。通过采用跨学科方法,我们发现肿瘤内的糖积累与植物糖的差异表达相吻合,最终将被输出转运体和质子/蔗糖协同转运蛋白运输出去。为了积累植物糖,真菌会部署自己的一套糖转运蛋白,在真菌胞质溶胶内产生糖梯度,通过表达胞质葡萄糖(Glc)荧光共振能量转移传感器来记录。我们的测量结果表明,在感染过程中,丝状真菌顶端可能存在较高的 Glc 水平。在黑暗条件下种植受感染的植物会导致植物糖水平降低和真菌顶端 Glc 梯度丧失,这支持了真菌获取糖与宿主供应之间的紧密联系。最后,真菌感染会导致植物糖分布严重失衡,最终影响种子结实和产量。

相似文献

1
Sugar Partitioning between and Its Host L during Infection.与宿主 L 感染过程中糖的分配。
Plant Physiol. 2019 Apr;179(4):1373-1385. doi: 10.1104/pp.18.01435. Epub 2018 Dec 28.

引用本文的文献

7
8
Early infection response of fungal biotroph in maize.玉米中真菌活体营养型的早期感染反应
Front Plant Sci. 2022 Sep 9;13:970897. doi: 10.3389/fpls.2022.970897. eCollection 2022.
10
The GhSWEET42 Glucose Transporter Participates in Infection in Cotton.GhSWEET42葡萄糖转运蛋白参与棉花感染过程。
Front Plant Sci. 2021 Jul 27;12:690754. doi: 10.3389/fpls.2021.690754. eCollection 2021.

本文引用的文献

1
The Biotrophic Development of Studied by RNA-Seq Analysis.利用 RNA-Seq 分析研究生物营养发育。
Plant Cell. 2018 Feb;30(2):300-323. doi: 10.1105/tpc.17.00764. Epub 2018 Jan 25.
8
SWEETs, transporters for intracellular and intercellular sugar translocation.SWEETs,细胞内和细胞间糖转运的转运蛋白。
Curr Opin Plant Biol. 2015 Jun;25:53-62. doi: 10.1016/j.pbi.2015.04.005. Epub 2015 May 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验