Eskin D G, Tzanakis I, Wang F, Lebon G S B, Subroto T, Pericleous K, Mi J
BCAST, Brunel University London, Uxbridge UB8 3PH, UK; Tomsk State University, Tomsk 634050, Russian Federation.
MEMS, Oxford Brookes University, MEMS, Oxford OX33 1HX, UK.
Ultrason Sonochem. 2019 Apr;52:455-467. doi: 10.1016/j.ultsonch.2018.12.028. Epub 2018 Dec 15.
Ultrasonic (cavitation) melt processing attracts considerable interest from both academic and industrial communities as a promising route to provide clean, environment friendly and energy efficient solutions for some of the core issues of the metal casting industry, such as improving melt quality and providing structure refinement. In the last 5 years, the authors undertook an extensive research programme into fundamental mechanisms of cavitation melt processing using state-of-the-art and unique facilities and methodologies. This overview summarises the recent results on the evaluation of acoustic pressure and melt flows in the treated melt, direct observations and quantitative analysis of cavitation in liquid aluminium alloys, in-situ and ex-situ studies of the nucleation, growth and fragmentation of intermetallics, and de-agglomeration of particles. These results provide valuable new insights and knowledge that are essential for upscaling ultrasonic melt processing to industrial level.
超声(空化)熔体处理作为一种为金属铸造行业的一些核心问题提供清洁、环境友好且节能解决方案的有前景的途径,引起了学术界和工业界的广泛关注,比如提高熔体质量和细化组织。在过去5年里,作者们利用最先进的独特设备和方法,对空化熔体处理的基本机制开展了广泛的研究项目。本综述总结了近期关于处理熔体中的声压和熔体流动评估、液态铝合金中空化的直接观察和定量分析、金属间化合物形核、生长和破碎的原位和非原位研究以及颗粒解团聚的研究结果。这些结果提供了宝贵的新见解和知识,对于将超声熔体处理扩大到工业规模至关重要。