Suppr超能文献

计数数据的潜在类别分析中项目误指定和二分法对类别和参数恢复的影响。

The Impact of Item Misspecification and Dichotomization on Class and Parameter Recovery in LCA of Count Data.

机构信息

a Department of Psychology , Palo Alto University.

出版信息

Multivariate Behav Res. 2019 Jan-Feb;54(1):113-145. doi: 10.1080/00273171.2018.1499499. Epub 2018 Dec 31.

Abstract

Mixture analysis of count data has become increasingly popular among researchers of substance use, behavioral analysis, and program evaluation. However, this increase in popularity seems to have occurred along with adoption of some conventions in model specification based on arbitrary heuristics that may impact the validity of results. Findings from a systematic review of recent drug and alcohol publications suggested count variables are often dichotomized or misspecified as continuous normal indicators in mixture analysis. Prior research suggests that misspecifying skewed distributions of continuous indicators in mixture analysis introduces bias, though the consequences of this practice when applied to count indicators has not been studied. The present work describes results from a simulation study examining bias in mixture recovery when count indicators are dichotomized (median split; presence vs. absence), ordinalized, or the distribution is misspecified (continuous normal; incorrect count distribution). All distributional misspecifications and methods of categorizing resulted in greater bias in parameter estimates and recovery of class membership relative to specifying the true distribution, though dichotomization appeared to improve class enumeration accuracy relative to all other specifications. Overall, results demonstrate the importance of accurately modeling count indicators in mixture analysis, as misspecification and categorizing data can distort study outcomes.

摘要

计数数据的混合分析在药物使用、行为分析和项目评估研究人员中越来越受欢迎。然而,这种流行似乎是伴随着基于任意启发式的模型规范约定的采用而出现的,这些约定可能会影响结果的有效性。对最近的毒品和酒精出版物的系统回顾发现,计数变量通常在混合分析中被二值化或错误指定为连续正态指标。先前的研究表明,在混合分析中错误指定连续指标的偏态分布会引入偏差,尽管当应用于计数指标时,这种做法的后果尚未得到研究。本工作描述了一项模拟研究的结果,该研究检查了当计数指标被二值化(中位数分割;存在与不存在)、有序化或分布被错误指定(连续正态;不正确的计数分布)时,混合恢复中的偏差。所有分布的误指定和分类方法都导致参数估计和类别成员恢复的偏差大于指定真实分布的情况,尽管与所有其他规范相比,二值化似乎提高了类别枚举的准确性。总的来说,结果表明在混合分析中准确建模计数指标的重要性,因为误指定和数据分类会扭曲研究结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验