University of North Carolina at Chapel Hill.
Multivariate Behav Res. 2019 Nov-Dec;54(6):882-905. doi: 10.1080/00273171.2019.1596781. Epub 2019 Jul 2.
Recent work reframes direct effects of covariates on items in mixture models as differential item functioning (DIF) and shows that, when present in the data but omitted from the fitted latent class model, DIF can lead to overextraction of classes. However, less is known about the effects of DIF on model performance-including parameter bias, classification accuracy, and distortion of class-specific response profiles-once the correct number of classes is chosen. First, we replicate and extend prior findings relating DIF to class enumeration using a comprehensive simulation study. In a second simulation study using the same parameters, we show that, while the performance of LCA is robust to the misspecification of DIF effects, it is degraded when DIF is omitted entirely. Moreover, the robustness of LCA to omitted DIF differs widely based on the degree of class separation. Finally, simulation results are contextualized by an empirical example.
最近的研究将协变量对混合模型中项目的直接影响重新定义为差异项目功能(DIF),并表明,当数据中存在但从拟合潜在类别模型中省略时,DIF 可能导致类别过度提取。然而,当选择正确的类别数量时,关于 DIF 对模型性能的影响(包括参数偏差、分类准确性和类别特定响应分布的扭曲)知之甚少。首先,我们使用全面的模拟研究复制和扩展了先前关于 DIF 与类别枚举关系的发现。在第二项使用相同参数的模拟研究中,我们表明,虽然 LCA 的性能对 DIF 效应的指定不正确具有鲁棒性,但当完全省略 DIF 时,其性能会降低。此外,LCA 对遗漏 DIF 的鲁棒性差异很大,具体取决于类别分离的程度。最后,通过一个实证例子来阐述模拟结果。