Bijelic Aleksandar, Rompel Annette
Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Vienna, Austria.
ChemTexts. 2018;4(3):10. doi: 10.1007/s40828-018-0064-1. Epub 2018 Aug 28.
Protein crystallography is the most widely used method for determining the molecular structure of proteins and obtaining structural information on protein-ligand complexes at the atomic level. As the structure determines the functions and properties of a protein, crystallography is of immense importance for nearly all research fields related to biochemistry. However, protein crystallography suffers from some major drawbacks, whereby the unpredictability of the crystallization process represents the main bottleneck. Crystallization is still more or less a 'trial and error' based procedure, and therefore, very time and resource consuming. Many strategies have been developed in the past decades to improve or enable the crystallization of proteins, whereby the use of so-called additives, which are mostly small molecules that make proteins more amenable to crystallization, is one of the most convenient and successful methods. Most of the commonly used additives are, however, restricted to particular crystallization conditions or groups of proteins. Therefore, a more universal additive addressing a wider range of proteins and being applicable to a broad spectrum of crystallization conditions would represent a significant advance in the field of protein crystallography. In recent years, polyoxometalates (POMs) emerged as a promising group of crystallization additives due to their unique structures and properties. In this regard, the tellurium-centered Anderson-Evans polyoxotungstate [TeWO] (TEW) showed its high potential as crystallization additive. In this lecture text, the development of POMs as tools in protein crystallography are discussed with a special focus on the so far most successful cluster TEW.
蛋白质晶体学是用于确定蛋白质分子结构并在原子水平上获取蛋白质 - 配体复合物结构信息的最广泛使用的方法。由于结构决定了蛋白质的功能和特性,晶体学对于几乎所有与生物化学相关的研究领域都极为重要。然而,蛋白质晶体学存在一些主要缺点,其中结晶过程的不可预测性是主要瓶颈。结晶仍然或多或少是一个基于“试错”的过程,因此非常耗费时间和资源。在过去几十年中已经开发了许多策略来改善或实现蛋白质的结晶,其中使用所谓的添加剂是最方便且成功的方法之一,这些添加剂大多是使蛋白质更易于结晶的小分子。然而,大多数常用的添加剂仅限于特定的结晶条件或蛋白质组。因此,一种更通用的添加剂,适用于更广泛的蛋白质并适用于广泛的结晶条件,将代表蛋白质晶体学领域的重大进展。近年来,多金属氧酸盐(POMs)因其独特的结构和性质而成为一类有前途的结晶添加剂。在这方面,以碲为中心的安德森 - 埃文斯多金属氧钨酸盐[TeWO](TEW)显示出作为结晶添加剂的巨大潜力。在本讲座文本中,将讨论多金属氧酸盐作为蛋白质晶体学工具的发展,特别关注迄今为止最成功的簇合物TEW。