Bijelic Aleksandar, Aureliano Manuel, Rompel Annette
Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria.
Chem Commun (Camb). 2018 Jan 31;54(10):1153-1169. doi: 10.1039/c7cc07549a.
Polyoxometalates (POMs) are, mostly anionic, metal oxide compounds that span a wide range of tunable physical and chemical features rendering them very interesting for biological purposes, an continuously emerging but little explored field. Due to their biological and biochemical effects, including antitumor, -viral and -bacterial properties, POMs and POM-based systems are considered as promising future metallodrugs. In this article, we focus on the antibacterial activity of POMs and their therapeutic potential in the battle against bacteria and their increasing resistance against pharmaceuticals. Recent advances in the synthesis of POMs are highlighted, with emphasis on the development and properties of biologically active POM-based hybrid and nanocomposite structures. By analysing the antibacterial activity and structure of POMs, putative mode of actions are provided, including potential targets for POM-protein interactions, and a structure-activity-relationship was established for a series of POMs against two bacteria, namely Helicobacter pylori and Streptococcus pneumoniae.
多金属氧酸盐(POMs)大多是阴离子金属氧化物化合物,具有广泛的可调节物理和化学特性,这使得它们在生物学领域极具吸引力,而生物学领域是一个不断涌现但尚未充分探索的领域。由于其生物学和生物化学效应,包括抗肿瘤、抗病毒和抗菌特性,POMs及其相关体系被认为是未来有前景的金属药物。在本文中,我们聚焦于POMs的抗菌活性及其在对抗细菌和日益增强的耐药性方面的治疗潜力。文中突出了POMs合成方面的最新进展,重点介绍了具有生物活性的基于POMs的杂化和纳米复合结构的开发与特性。通过分析POMs的抗菌活性和结构,给出了可能的作用模式,包括POM-蛋白质相互作用的潜在靶点,并建立了一系列POMs针对两种细菌(幽门螺杆菌和肺炎链球菌)的构效关系。