Suppr超能文献

场景复杂性调节自然场景中目标检测过程中的反馈活动程度。

Scene complexity modulates degree of feedback activity during object detection in natural scenes.

机构信息

New York University, Department of Psychology, New York, New York, United States of America.

Spinoza Centre for Neuroimaging, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands.

出版信息

PLoS Comput Biol. 2018 Dec 31;14(12):e1006690. doi: 10.1371/journal.pcbi.1006690. eCollection 2018 Dec.

Abstract

Selective brain responses to objects arise within a few hundreds of milliseconds of neural processing, suggesting that visual object recognition is mediated by rapid feed-forward activations. Yet disruption of neural responses in early visual cortex beyond feed-forward processing stages affects object recognition performance. Here, we unite these discrepant findings by reporting that object recognition involves enhanced feedback activity (recurrent processing within early visual cortex) when target objects are embedded in natural scenes that are characterized by high complexity. Human participants performed an animal target detection task on natural scenes with low, medium or high complexity as determined by a computational model of low-level contrast statistics. Three converging lines of evidence indicate that feedback was selectively enhanced for high complexity scenes. First, functional magnetic resonance imaging (fMRI) activity in early visual cortex (V1) was enhanced for target objects in scenes with high, but not low or medium complexity. Second, event-related potentials (ERPs) evoked by target objects were selectively enhanced at feedback stages of visual processing (from ~220 ms onwards) for high complexity scenes only. Third, behavioral performance for high complexity scenes deteriorated when participants were pressed for time and thus less able to incorporate the feedback activity. Modeling of the reaction time distributions using drift diffusion revealed that object information accumulated more slowly for high complexity scenes, with evidence accumulation being coupled to trial-to-trial variation in the EEG feedback response. Together, these results suggest that while feed-forward activity may suffice to recognize isolated objects, the brain employs recurrent processing more adaptively in naturalistic settings, using minimal feedback for simple scenes and increasing feedback for complex scenes.

摘要

对物体的选择性大脑反应在神经处理的几百毫秒内产生,这表明视觉物体识别是由快速前馈激活介导的。然而,早期视觉皮层中除前馈处理阶段以外的神经反应的中断会影响物体识别性能。在这里,我们通过报告以下内容将这些不一致的发现统一起来:当目标物体嵌入以高复杂性为特征的自然场景中时,物体识别涉及增强的反馈活动(早期视觉皮层内的递归处理)。人类参与者在低、中或高复杂度的自然场景中执行动物目标检测任务,这些复杂度是通过低水平对比度统计的计算模型确定的。有三条证据表明,反馈活动仅针对高复杂度场景进行了选择性增强。首先,早期视觉皮层(V1)的功能磁共振成像(fMRI)活动在高复杂度场景中的目标物体增强,而在低复杂度或中复杂度场景中没有增强。其次,仅在高复杂度场景中,目标物体诱发的事件相关电位(ERP)在视觉处理的反馈阶段(从~220ms 开始)被选择性增强。第三,当参与者时间紧迫,因此无法整合反馈活动时,高复杂度场景的行为表现会恶化。使用漂移扩散对反应时间分布进行建模表明,对于高复杂度场景,物体信息的积累速度较慢,证据积累与 EEG 反馈反应的试验间变化相关联。总的来说,这些结果表明,虽然前馈活动可能足以识别孤立的物体,但大脑在自然环境中更具适应性地采用递归处理,对简单场景使用最小的反馈,对复杂场景增加反馈。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b983/6329519/8ca199e8d8ea/pcbi.1006690.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验