Suppr超能文献

二分图中大规模miRNA-lncRNA相互作用网络的新型链接预测

Novel link prediction for large-scale miRNA-lncRNA interaction network in a bipartite graph.

作者信息

Huang Zhi-An, Huang Yu-An, You Zhu-Hong, Zhu Zexuan, Sun Yiwen

机构信息

College of Computer Science and Software Engineering, Shenzhen Universit1y, Shenzhen, 518060, China.

Department of Computer Science, City University of Hong Kong, Hong Kong, 999077, China.

出版信息

BMC Med Genomics. 2018 Dec 31;11(Suppl 6):113. doi: 10.1186/s12920-018-0429-8.

Abstract

BACKGROUND

Current knowledge and data on miRNA-lncRNA interactions is still limited and little effort has been made to predict target lncRNAs of miRNAs. Accumulating evidences suggest that the interaction patterns between lncRNAs and miRNAs are closely related to relative expression level, forming a titration mechanism. It could provide an effective approach for characteristic feature extraction. In addition, using the coding non-coding co-expression network and sequence data could also help to measure the similarities among miRNAs and lncRNAs. By mathematically analyzing these types of similarities, we come up with two findings that (i) lncRNAs/miRNAs tend to collaboratively interact with miRNAs/lncRNAs of similar expression profiles, and vice versa, and (ii) those miRNAs interacting with a cluster of common target genes tend to jointly target at the common lncRNAs.

METHODS

In this work, we developed a novel group preference Bayesian collaborative filtering model called GBCF for picking up a top-k probability ranking list for an individual miRNA or lncRNA based on the known miRNA-lncRNA interaction network.

RESULTS

To evaluate the effectiveness of GBCF, leave-one-out and k-fold cross validations as well as a series of comparison experiments were carried out. GBCF achieved the values of area under ROC curve of 0.9193, 0.8354+/- 0.0079, 0.8615+/- 0.0078, and 0.8928+/- 0.0082 based on leave-one-out, 2-fold, 5-fold, and 10-fold cross validations respectively, demonstrating its reliability and robustness.

CONCLUSIONS

GBCF could be used to select potential lncRNA targets of specific miRNAs and offer great insights for further researches on ceRNA regulation network.

摘要

背景

目前关于miRNA与lncRNA相互作用的知识和数据仍然有限,且在预测miRNA的靶lncRNA方面所做的工作较少。越来越多的证据表明,lncRNA与miRNA之间的相互作用模式与相对表达水平密切相关,形成了一种滴定机制。这可能为特征提取提供一种有效的方法。此外,利用编码-非编码共表达网络和序列数据也有助于衡量miRNA与lncRNA之间的相似性。通过对这些相似性进行数学分析,我们得出了两个发现:(i)lncRNA/miRNA倾向于与具有相似表达谱的miRNA/lncRNA协同相互作用,反之亦然;(ii)那些与一组共同靶基因相互作用的miRNA倾向于共同靶向共同的lncRNA。

方法

在这项工作中,我们开发了一种名为GBCF的新型群体偏好贝叶斯协同过滤模型,用于基于已知的miRNA-lncRNA相互作用网络为单个miRNA或lncRNA获取前k个概率排名列表。

结果

为了评估GBCF的有效性,进行了留一法和k折交叉验证以及一系列比较实验。基于留一法、2折、5折和10折交叉验证,GBCF分别获得了0.9193、0.8354±0.0079、0.8615±0.0078和0.8928±0.0082的ROC曲线下面积值,证明了其可靠性和稳健性。

结论

GBCF可用于选择特定miRNA的潜在lncRNA靶标,并为ceRNA调控网络的进一步研究提供重要见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69ea/6311942/b53c3b3eaf74/12920_2018_429_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验