Zhao Chengshuai, Qiu Yang, Zhou Shuang, Liu Shichao, Zhang Wen, Niu Yanqing
College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
School of Computer Science, Wuhan University, Wuhan, 430072, China.
BMC Genomics. 2020 Dec 17;21(Suppl 13):867. doi: 10.1186/s12864-020-07238-x.
Researchers discover LncRNA-miRNA regulatory paradigms modulate gene expression patterns and drive major cellular processes. Identification of lncRNA-miRNA interactions (LMIs) is critical to reveal the mechanism of biological processes and complicated diseases. Because conventional wet experiments are time-consuming, labor-intensive and costly, a few computational methods have been proposed to expedite the identification of lncRNA-miRNA interactions. However, little attention has been paid to fully exploit the structural and topological information of the lncRNA-miRNA interaction network.
In this paper, we propose novel lncRNA-miRNA prediction methods by using graph embedding and ensemble learning. First, we calculate lncRNA-lncRNA sequence similarity and miRNA-miRNA sequence similarity, and then we combine them with the known lncRNA-miRNA interactions to construct a heterogeneous network. Second, we adopt several graph embedding methods to learn embedded representations of lncRNAs and miRNAs from the heterogeneous network, and construct the ensemble models using two ensemble strategies. For the former, we consider individual graph embedding based models as base predictors and integrate their predictions, and develop a method, named GEEL-PI. For the latter, we construct a deep attention neural network (DANN) to integrate various graph embeddings, and present an ensemble method, named GEEL-FI. The experimental results demonstrate both GEEL-PI and GEEL-FI outperform other state-of-the-art methods. The effectiveness of two ensemble strategies is validated by further experiments. Moreover, the case studies show that GEEL-PI and GEEL-FI can find novel lncRNA-miRNA associations.
The study reveals that graph embedding and ensemble learning based method is efficient for integrating heterogeneous information derived from lncRNA-miRNA interaction network and can achieve better performance on LMI prediction task. In conclusion, GEEL-PI and GEEL-FI are promising for lncRNA-miRNA interaction prediction.
研究人员发现长链非编码RNA(lncRNA)-微小RNA(miRNA)调控模式可调节基因表达模式并驱动主要细胞过程。识别lncRNA-miRNA相互作用(LMI)对于揭示生物过程和复杂疾病的机制至关重要。由于传统的湿实验耗时、费力且成本高昂,因此已提出了一些计算方法来加速lncRNA-miRNA相互作用的识别。然而,很少有人关注充分利用lncRNA-miRNA相互作用网络的结构和拓扑信息。
在本文中,我们提出了使用图嵌入和集成学习的新型lncRNA-miRNA预测方法。首先,我们计算lncRNA-lncRNA序列相似性和miRNA-miRNA序列相似性,然后将它们与已知的lncRNA-miRNA相互作用相结合以构建异质网络。其次,我们采用几种图嵌入方法从异质网络中学习lncRNA和miRNA的嵌入表示,并使用两种集成策略构建集成模型。对于前者,我们将基于单个图嵌入的模型视为基本预测器并整合它们的预测,从而开发出一种名为GEEL-PI的方法。对于后者,我们构建了一个深度注意力神经网络(DANN)来整合各种图嵌入,并提出了一种名为GEEL-FI的集成方法。实验结果表明,GEEL-PI和GEEL-FI均优于其他现有方法。进一步的实验验证了两种集成策略的有效性。此外,案例研究表明GEEL-PI和GEEL-FI可以发现新的lncRNA-miRNA关联。
该研究表明,基于图嵌入和集成学习的方法对于整合来自lncRNA-miRNA相互作用网络的异质信息是有效的,并且在LMI预测任务上可以取得更好的性能。总之,GEEL-PI和GEEL-FI在lncRNA-miRNA相互作用预测方面具有前景。