Suppr超能文献

LRLSHMDA:用于人类微生物-疾病关联预测的拉普拉斯正则化最小二乘法。

LRLSHMDA: Laplacian Regularized Least Squares for Human Microbe-Disease Association prediction.

机构信息

School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, 221116, China.

Jiangsu Key Laboratory of Mine Mechanical and Electrical Equipment, China University of Mining and Technology, Xuzhou, 221116, China.

出版信息

Sci Rep. 2017 Aug 8;7(1):7601. doi: 10.1038/s41598-017-08127-2.

Abstract

An increasing number of evidences indicate microbes are implicated in human physiological mechanisms, including complicated disease pathology. Some microbes have been demonstrated to be associated with diverse important human diseases or disorders. Through investigating these disease-related microbes, we can obtain a better understanding of human disease mechanisms for advancing medical scientific progress in terms of disease diagnosis, treatment, prevention, prognosis and drug discovery. Based on the known microbe-disease association network, we developed a semi-supervised computational model of Laplacian Regularized Least Squares for Human Microbe-Disease Association (LRLSHMDA) by introducing Gaussian interaction profile kernel similarity calculation and Laplacian regularized least squares classifier. LRLSHMDA reached the reliable AUCs of 0.8909 and 0.7657 based on the global and local leave-one-out cross validations, respectively. In the framework of 5-fold cross validation, average AUC value of 0.8794 +/-0.0029 further demonstrated its promising prediction ability. In case studies, 9, 9 and 8 of top-10 predicted microbes have been manually certified to be associated with asthma, colorectal carcinoma and chronic obstructive pulmonary disease by published literature evidence. Our proposed model achieves better prediction performance relative to the previous model. We expect that LRLSHMDA could offer insights into identifying more promising human microbe-disease associations in the future.

摘要

越来越多的证据表明,微生物与人类的生理机制有关,包括复杂的疾病病理。一些微生物已被证明与多种重要的人类疾病或疾病有关。通过研究这些与疾病相关的微生物,我们可以更好地了解人类疾病的机制,从而推动医学科学在疾病诊断、治疗、预防、预后和药物发现方面的进步。基于已知的微生物-疾病关联网络,我们通过引入高斯相互作用谱核相似性计算和拉普拉斯正则化最小二乘分类器,开发了一种用于人类微生物-疾病关联的拉普拉斯正则化最小二乘半监督计算模型(LRLSHMDA)。LRLSHMDA 在全局和局部留一交叉验证中分别达到了可靠的 AUC 值 0.8909 和 0.7657。在 5 折交叉验证的框架下,平均 AUC 值 0.8794 +/-0.0029 进一步证明了其有前途的预测能力。在案例研究中,通过已发表的文献证据,前 10 个预测微生物中有 9、9 和 8 个被手动证实与哮喘、结直肠癌和慢性阻塞性肺疾病有关。我们提出的模型相对于以前的模型具有更好的预测性能。我们希望 LRLSHMDA 能够为未来识别更多有前途的人类微生物-疾病关联提供思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbb6/5548838/75826e49c613/41598_2017_8127_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验