Wang Joel I-Jan, Rodan-Legrain Daniel, Bretheau Landry, Campbell Daniel L, Kannan Bharath, Kim David, Kjaergaard Morten, Krantz Philip, Samach Gabriel O, Yan Fei, Yoder Jonilyn L, Watanabe Kenji, Taniguchi Takashi, Orlando Terry P, Gustavsson Simon, Jarillo-Herrero Pablo, Oliver William D
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
Nat Nanotechnol. 2019 Feb;14(2):120-125. doi: 10.1038/s41565-018-0329-2. Epub 2018 Dec 31.
Quantum coherence and control is foundational to the science and engineering of quantum systems. In van der Waals materials, the collective coherent behaviour of carriers has been probed successfully by transport measurements. However, temporal coherence and control, as exemplified by manipulating a single quantum degree of freedom, remains to be verified. Here we demonstrate such coherence and control of a superconducting circuit incorporating graphene-based Josephson junctions. Furthermore, we show that this device can be operated as a voltage-tunable transmon qubit, whose spectrum reflects the electronic properties of massless Dirac fermions travelling ballistically. In addition to the potential for advancing extensible quantum computing technology, our results represent a new approach to studying van der Waals materials using microwave photons in coherent quantum circuits.
量子相干与控制是量子系统科学与工程的基础。在范德华材料中,通过输运测量已成功探测到载流子的集体相干行为。然而,以操纵单个量子自由度为例的时间相干与控制仍有待验证。在此,我们展示了包含基于石墨烯的约瑟夫森结的超导电路的这种相干与控制。此外,我们表明该器件可作为电压可调谐的跨导量子比特运行,其频谱反映了弹道传播的无质量狄拉克费米子的电子特性。除了推动可扩展量子计算技术发展的潜力外,我们的结果代表了一种利用相干量子电路中的微波光子研究范德华材料的新方法。