Antony Abhinandan, Gustafsson Martin V, Ribeill Guilhem J, Ware Matthew, Rajendran Anjaly, Govia Luke C G, Ohki Thomas A, Taniguchi Takashi, Watanabe Kenji, Hone James, Fong Kin Chung
Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States.
Raytheon BBN Technologies, Quantum Engineering and Computing Group, Cambridge, Massachusetts 02138, United States.
Nano Lett. 2021 Dec 8;21(23):10122-10126. doi: 10.1021/acs.nanolett.1c04160. Epub 2021 Nov 18.
Quantum computers can potentially achieve an exponential speedup versus classical computers on certain computational tasks, recently demonstrated in superconducting qubit processors. However, the capacitor electrodes that comprise these qubits must be large in order to avoid lossy dielectrics. This tactic hinders scaling by increasing parasitic coupling among circuit components, degrading individual qubit addressability, and limiting the spatial density of qubits. Here, we take advantage of the unique properties of van der Waals (vdW) materials to reduce the qubit area by >1000 times while preserving the capacitance while maintaining quantum coherence. Our qubits combine conventional aluminum-based Josephson junctions with parallel-plate capacitors composed of crystalline layers of superconducting niobium diselenide and insulating hexagonal boron nitride. We measure a vdW transmon relaxation time of 1.06 μs, demonstrating a path to achieve high-qubit-density quantum processors with long coherence times, and the broad utility of layered heterostructures in low-loss, high-coherence quantum devices.
量子计算机在某些计算任务上相对于经典计算机有可能实现指数级加速,最近在超导量子比特处理器中得到了证明。然而,构成这些量子比特的电容器电极必须很大,以避免有损电介质。这种策略通过增加电路组件之间的寄生耦合、降低单个量子比特的可寻址性以及限制量子比特的空间密度来阻碍缩放。在这里,我们利用范德华(vdW)材料的独特特性,将量子比特面积减小1000倍以上,同时保持电容并维持量子相干性。我们的量子比特将传统的铝基约瑟夫森结与由超导二硒化铌晶体层和绝缘六方氮化硼组成的平行板电容器相结合。我们测量到一个范德华跨导量子比特的弛豫时间为1.06微秒,展示了一条实现具有长相干时间的高量子比特密度量子处理器的途径,以及层状异质结构在低损耗、高相干量子器件中的广泛应用。